Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
bioRxiv ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39282308

RESUMEN

Background: Acute liver injury (ALI) that progresses into acute liver failure (ALF) is a life-threatening condition with an increasing incidence and associated costs. Acetaminophen (N-acetyl-p-aminophenol, APAP) overdosing is among the leading causes of ALI and ALF in the Northern Hemisphere. Brain dysfunction defined as hepatic encephalopathy is one of the main diagnostic criteria for ALF. While neuroinflammation and brain metabolic alterations significantly contribute to hepatic encephalopathy, their evaluation at early stages of ALI remained challenging. To provide insights, we utilized post-mortem analysis and non-invasive brain micro positron emission tomography (microPET) imaging of mice with APAP-induced ALI. Methods: Male C57BL/6 mice were treated with vehicle or APAP (600 mg/kg, i.p.). Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), liver damage (using H&E staining), hepatic and serum IL-6 levels, and hippocampal IBA1 (using immunolabeling) were evaluated at 24h and 48h. Vehicle and APAP treated animals also underwent microPET imaging utilizing a dual tracer approach, including [11C]-peripheral benzodiazepine receptor ([11C]PBR28) to assess microglia/astrocyte activation and [18F]-fluoro-2-deoxy-2-D-glucose ([18F]FDG) to assess energy metabolism. Brain images were pre-processed and evaluated using conjunction and individual tracer uptake analysis. Results: APAP-induced ALI and hepatic and systemic inflammation were detected at 24h and 48h by significantly elevated serum ALT and AST levels, hepatocellular damage, and increased hepatic and serum IL-6 levels. In parallel, increased microglial numbers, indicative for neuroinflammation were observed in the hippocampus of APAP-treated mice. MicroPET imaging revealed overlapping increases in [11C]PBR28 and [18F]FDG uptake in the hippocampus, thalamus, and habenular nucleus indicating microglial/astroglial activation and increased energy metabolism in APAP-treated mice (vs. vehicle-treated mice) at 24h. Similar significant increases were also found in the hypothalamus, thalamus, and cerebellum at 48h. The individual tracer uptake analyses (APAP vs vehicle) at 24h and 48h confirmed increases in these brain areas and indicated additional tracer- and region-specific effects including hippocampal alterations. Conclusion: Peripheral manifestations of APAP-induced ALI in mice are associated with brain neuroinflammatory and metabolic alterations at relatively early stages of disease progression, which can be non-invasively evaluated using microPET imaging and conjunction analysis. These findings support further PET-based investigations of brain function in ALI/ALF that may inform timely therapeutic interventions.

2.
J Neural Eng ; 20(2)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36920156

RESUMEN

Objective.Sensory nerves of the peripheral nervous system (PNS) transmit afferent signals from the body to the brain. These peripheral nerves are composed of distinct subsets of fibers and associated cell bodies, which reside in peripheral ganglia distributed throughout the viscera and along the spinal cord. The vagus nerve (cranial nerve X) is a complex polymodal nerve that transmits a wide array of sensory information, including signals related to mechanical, chemical, and noxious stimuli. To understand how stimuli applied to the vagus nerve are encoded by vagal sensory neurons in the jugular-nodose ganglia, we developed a framework for micro-endoscopic calcium imaging and analysis.Approach.We developed novel methods forin vivoimaging of the intact jugular-nodose ganglion using a miniature microscope (Miniscope) in transgenic mice with the genetically-encoded calcium indicator GCaMP6f. We adapted the Python-based analysis package Calcium Imaging Analysis (CaImAn) to process the resulting one-photon fluorescence data into calcium transients for subsequent analysis. Random forest classification was then used to identify specific types of neuronal responders.Results.We demonstrate that recordings from the jugular-nodose ganglia can be accomplished through careful surgical dissection and ganglia stabilization. Using a customized acquisition and analysis pipeline, we show that subsets of vagal sensory neurons respond to different chemical stimuli applied to the vagus nerve. Successful classification of the responses with a random forest model indicates that certain calcium transient features, such as amplitude and duration, are important for encoding these stimuli by sensory neurons.Significance.This experimental approach presents a new framework for investigating how individual vagal sensory neurons encode various stimuli on the vagus nerve. Our surgical and analytical approach can be applied to other PNS ganglia in rodents and other small animal species to elucidate previously unexplored roles for peripheral neurons in a diverse set of physiological functions.


Asunto(s)
Calcio , Ganglio Nudoso , Ratones , Animales , Ganglio Nudoso/metabolismo , Calcio/metabolismo , Nervio Vago , Células Receptoras Sensoriales/metabolismo , Vías Aferentes
3.
Nat Commun ; 14(1): 3122, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264009

RESUMEN

Deficiency of coagulation factor VIII in hemophilia A disrupts clotting and prolongs bleeding. While the current mainstay of therapy is infusion of factor VIII concentrates, inhibitor antibodies often render these ineffective. Because preclinical evidence shows electrical vagus nerve stimulation accelerates clotting to reduce hemorrhage without precipitating systemic thrombosis, we reasoned it might reduce bleeding in hemophilia A. Using two different male murine hemorrhage and thrombosis models, we show vagus nerve stimulation bypasses the factor VIII deficiency of hemophilia A to decrease bleeding and accelerate clotting. Vagus nerve stimulation targets acetylcholine-producing T lymphocytes in spleen and α7 nicotinic acetylcholine receptors (α7nAChR) on platelets to increase calcium uptake and enhance alpha granule release. Splenectomy or genetic deletion of T cells or α7nAChR abolishes vagal control of platelet activation, thrombus formation, and bleeding in male mice. Vagus nerve stimulation warrants clinical study as a therapy for coagulation disorders and surgical or traumatic bleeding.


Asunto(s)
Hemofilia A , Trombosis , Estimulación del Nervio Vago , Ratones , Masculino , Animales , Hemofilia A/complicaciones , Hemofilia A/terapia , Receptor Nicotínico de Acetilcolina alfa 7/genética , Plaquetas , Hemorragia/terapia , Nervio Vago
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA