Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Infect Immun ; 82(7): 2728-35, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24733094

RESUMEN

Porphyromonas gingivalis is a Gram-negative obligate anaerobic bacterium and is considered a keystone pathogen in the initiation of periodontitis, one of the most widespread infectious diseases. Bacterial bis-(3'-5') cyclic GMP (cyclic di-GMP [c-di-GMP]) serves as a second messenger and is involved in modulating virulence factors in numerous bacteria. However, the role of this second messenger has not been investigated in P. gingivalis, mainly due to a lack of an annotation regarding diguanylate cyclases (DGCs) in this bacterium. Using bioinformatics tools, we found a protein, PGN_1932, containing a GGDEF domain. A deletion mutation in the pgn_1932 gene had a significant effect on the intracellular c-di-GMP level in P. gingivalis. Genetic analysis showed that expression of the fimA and rgpA genes, encoding the major protein subunit of fimbriae and an arginine-specific proteinase, respectively, was downregulated in the pgn_1932 mutant. Correspondingly, FimA protein production and the fimbrial display on the mutant were significantly reduced. Mutations in the pgn_1932 gene also had a significant impact on the adhesive and invasive capabilities of P. gingivalis, which are required for its pathogenicity. These findings provide evidence that the PGN_1932 protein is both responsible for synthesizing c-di-GMP and involved in biofilm formation and host cell invasion by P. gingivalis by controlling the expression and biosynthesis of FimA.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Porphyromonas gingivalis/enzimología , Porphyromonas gingivalis/patogenicidad , Adhesión Bacteriana/fisiología , Línea Celular , Biología Computacional , Proteínas de Escherichia coli/genética , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Humanos , Mutación , Liasas de Fósforo-Oxígeno/genética , Virulencia
2.
Appl Environ Microbiol ; 76(21): 7302-5, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20817810

RESUMEN

Listeria monocytogenes secretes two chitinases and one chitin binding protein. Mutants lacking chiA, chiB, or lmo2467 exhibited normal growth in cultured cells but were defective for growth in the livers and spleens of mice. Mammals lack chitin; thus, L. monocytogenes may have adapted chitinases to recognize alternative substrates to enhance pathogenesis.


Asunto(s)
Quitinasas/fisiología , Listeria monocytogenes/patogenicidad , Animales , Células CACO-2/microbiología , Quitina/metabolismo , Quitinasas/genética , Quitinasas/metabolismo , Genes Bacterianos/genética , Humanos , Listeria monocytogenes/enzimología , Listeria monocytogenes/genética , Listeriosis/microbiología , Hígado/microbiología , Ratones , Bazo/microbiología
3.
Elife ; 72018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30152756

RESUMEN

Most bacteria use an indirect pathway to generate aminoacylated glutamine and/or asparagine tRNAs. Clinical isolates of Mycobacterium tuberculosis with increased rates of error in gene translation (mistranslation) involving the indirect tRNA-aminoacylation pathway have increased tolerance to the first-line antibiotic rifampicin. Here, we identify that the aminoglycoside kasugamycin can specifically decrease mistranslation due to the indirect tRNA pathway. Kasugamycin but not the aminoglycoside streptomycin, can limit emergence of rifampicin resistance in vitro and increases mycobacterial susceptibility to rifampicin both in vitro and in a murine model of infection. Moreover, despite parenteral administration of kasugamycin being unable to achieve the in vitro minimum inhibitory concentration, kasugamycin alone was able to significantly restrict growth of Mycobacterium tuberculosis in mice. These data suggest that pharmacologically reducing mistranslation may be a novel mechanism for targeting bacterial adaptation.


Asunto(s)
Aminoglicósidos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Rifampin/farmacología , Aminoacilación , Aminoglicósidos/administración & dosificación , Aminoglicósidos/farmacocinética , Aminoglicósidos/uso terapéutico , Animales , Sinergismo Farmacológico , Edeína/farmacología , Inyecciones Intraperitoneales , Ratones , Pruebas de Sensibilidad Microbiana , Especificidad de Órganos , ARN de Transferencia/metabolismo , Rifampin/uso terapéutico , Estreptomicina/administración & dosificación , Estreptomicina/farmacocinética , Estreptomicina/farmacología , Estreptomicina/uso terapéutico , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Tuberculosis/patología
4.
PLoS One ; 10(3): e0120265, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25786241

RESUMEN

Contact-dependent growth inhibition (CDI) is a mode of inter-bacterial competition mediated by the CdiB/CdiA family of two-partner secretion systems. CdiA binds to receptors on susceptible target bacteria, then delivers a toxin domain derived from its C-terminus. Studies with Escherichia coli suggest the existence of multiple CDI growth-inhibition pathways, whereby different systems exploit distinct target-cell proteins to deliver and activate toxins. Here, we explore the CDI pathway in Burkholderia using the CDIIIBp1026b system encoded on chromosome II of Burkholderia pseudomallei 1026b as a model. We took a genetic approach and selected Burkholderia thailandensis E264 mutants that are resistant to growth inhibition by CDIIIBp1026b. We identified mutations in three genes, BTH_I0359, BTH_II0599, and BTH_I0986, each of which confers resistance to CDIIIBp1026b. BTH_I0359 encodes a small peptide of unknown function, whereas BTH_II0599 encodes a predicted inner membrane transport protein of the major facilitator superfamily. The inner membrane localization of BTH_II0599 suggests that it may facilitate translocation of CdiA-CTIIBp1026b toxin from the periplasm into the cytoplasm of target cells. BTH_I0986 encodes a putative transglycosylase involved in lipopolysaccharide (LPS) synthesis. ∆BTH_I0986 mutants have altered LPS structure and do not interact with CDI⁺ inhibitor cells to the same extent as BTH_I0986⁺ cells, suggesting that LPS could function as a receptor for CdiAIIBp1026b. Although ∆BTH_I0359, ∆BTH_II0599, and ∆BTH_I0986 mutations confer resistance to CDIIIBp1026b, they provide no protection against the CDIE264 system deployed by B. thailandensis E264. Together, these findings demonstrate that CDI growth-inhibition pathways are distinct and can differ significantly even between closely related species.


Asunto(s)
Burkholderia pseudomallei/genética , Cromosomas Bacterianos , Inhibición de Contacto/genética , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Secuencia de Aminoácidos , Adhesión Bacteriana , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Sistemas de Secreción Bacterianos , Toxinas Bacterianas/biosíntesis , Burkholderia pseudomallei/metabolismo , Citoplasma/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Lipopolisacáridos/biosíntesis , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Datos de Secuencia Molecular , Mutación , Periplasma/metabolismo , Transporte de Proteínas , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad de la Especie
5.
mBio ; 4(2): e00617-12, 2013 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-23512964

RESUMEN

UNLABELLED: Environmental pathogens survive and replicate within the outside environment while maintaining the capacity to infect mammalian hosts. For some microorganisms, mammalian infection may be a relatively rare event. Understanding how environmental pathogens retain their ability to cause disease may provide insight into environmental reservoirs of disease and emerging infections. Listeria monocytogenes survives as a saprophyte in soil but is capable of causing serious invasive disease in susceptible individuals. The bacterium secretes virulence factors that promote cell invasion, bacterial replication, and cell-to-cell spread. Recently, an L. monocytogenes chitinase (ChiA) was shown to enhance bacterial infection in mice. Given that mammals do not synthesize chitin, the function of ChiA within infected animals was not clear. Here we have demonstrated that ChiA enhances L. monocytogenes survival in vivo through the suppression of host innate immunity. L. monocytogenes ΔchiA mutants were fully capable of establishing bacterial replication within target organs during the first 48 h of infection. By 72 to 96 h postinfection, however, numbers of ΔchiA bacteria diminished, indicative of an effective immune response to contain infection. The ΔchiA-associated virulence defect could be complemented in trans by wild-type L. monocytogenes, suggesting that secreted ChiA altered a target that resulted in a more permissive host environment for bacterial replication. ChiA secretion resulted in a dramatic decrease in inducible nitric oxide synthase (iNOS) expression, and ΔchiA mutant virulence was restored in NOS2(-/-) mice lacking iNOS. This work is the first to demonstrate modulation of a specific host innate immune response by a bacterial chitinase. IMPORTANCE: Bacterial chitinases have traditionally been viewed as enzymes that either hydrolyze chitin as a food source or serve as a defense mechanism against organisms containing structural chitin (such as fungi). Recent evidence indicates that bacterial chitinases and chitin-binding proteins contribute to pathogenesis, primarily via bacterial adherence to chitin-like molecules present on the surface of mammalian cells. In contrast, mammalian chitinases have been linked to immunity via inflammatory immune responses that occur outside the context of infection, and since mammals do not produce chitin, the targets of these mammalian chitinases have remained elusive. This work demonstrates that a Listeria monocytogenes-secreted chitinase has distinct functional roles that include chitin hydrolysis and suppression of host innate immunity. The established link between chitinase and the inhibition of host inducible nitric oxide synthase (iNOS) expression may help clarify the thus far elusive relationship observed between mammalian chitinase enzymes and host inflammatory responses occurring in the absence of infection.


Asunto(s)
Quitinasas/metabolismo , Evasión Inmune , Inmunidad Innata/efectos de los fármacos , Listeria monocytogenes/inmunología , Listeria monocytogenes/patogenicidad , Factores de Virulencia/metabolismo , Animales , Quitinasas/genética , Modelos Animales de Enfermedad , Regulación hacia Abajo , Eliminación de Gen , Prueba de Complementación Genética , Listeriosis/inmunología , Listeriosis/microbiología , Ratones , Viabilidad Microbiana , Óxido Nítrico Sintasa de Tipo II/biosíntesis , Factores de Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA