RESUMEN
Characterization of gas targets relies largely on conventional optical techniques, providing millisecond time resolution, which not only overlooks the fluctuations occurring at shorter time scales but also often challenges the sensitivity limits of optical probing as their refractive index is close to unity. Hence, the ability to resolve these fluctuations needs to be addressed as it is paramount for accurate gas jet characterization for their applications, including laser-matter interaction in laser wakefield electron acceleration or plasma x ray sources. In this Letter, we introduce an advanced gas jet characterization system capable of visualizing fast density fluctuations by Schlieren imaging, combined with density characterization by interferometric tomography, both with increased sensitivity due to the four-pass probing configuration. We demonstrate that combining the two modalities provides a substantial advancement in achieving a comprehensive, both quantitative and qualitative, characterization of gas jets.
RESUMEN
The latest advances in petawatt laser technology within the ELI Beamlines project have stimulated the development of large surface area dielectrically coated mirrors meeting all demanding requirements for guiding the compressed 30â J, 25â fs HAPLS laser beam at 10â Hz repetition rate and a center wavelength of 810â nm entirely in vacuum. We describe the production and evaluation of Ta2O5/HfO2/SiO2 ion beam sputtered coated (440 × 290 × 75)â mm3 beam transport mirrors. No crazing was observed after thirty vacuum-air cycles. A laser induced damage threshold of 0.76â J/cm2 (fluence on mirror surface) was achieved and maintained at high shot rates.
RESUMEN
The emergence of petawatt lasers focused to relativistic intensities enables all-optical laboratory generation of intense magnetic fields in plasmas, which are of great interest due to their ubiquity in astrophysical phenomena. In this work, we study generation of spatially extended and long-lived intense magnetic fields. We show that such magnetic fields, scaling up to the gigagauss range, can be generated by interaction of petawatt laser pulses with relativistically underdense plasma. With three-dimensional particle-in-cell simulations we investigate generation of magnetic fields with strengths up to [Formula: see text] G and perform a large multi-parametric study of magnetic field in dependence on dimensionless laser amplitude [Formula: see text] and normalized plasma density [Formula: see text]. The numerical results yield scaling laws that closely follow derived analytical result [Formula: see text], and further show a close match with previous experimental works. Furthermore, we show in three-dimensional geometry that the decay of the magnetic wake is governed by current filament bending instability, which develops similarly to von Kármán vortex street in its nonlinear stage.
RESUMEN
Laser wakefield acceleration has proven to be an excellent source of electrons and X-rays suitable for ultra-fast probing of matter. These novel beams have demonstrated unprecedented spatial and temporal resolution allowing for new discoveries in material science and plasma physics. In particular, the study of dynamic processes such as non-thermal melt and lattice changes on femtosecond time-scales have paved a way to completely new scientific horizons. Here, we demonstrate the first single-shot electron radiography measurement using an femtosecond electron source based on the downramp-density gradient laser-wakefield-acceleration with the use of a compact Ti:sapphire laser. A quasi-monoenergetic electron beam with mean energy of 1.9 ± 0.4 MeV and charge 77 ± 47 pC per shot was generated by the laser incident onto a gas target and collimated using a two ring-magnet beam path. High quality electron radiography of solid objects with spatial resolution better than 150 [Formula: see text]m was demonstrated. Further developments of this scheme have the potential to obtain single-shot ultrafast electron diffraction from dynamic lattices. This scheme poses a great promise for smaller scale university laboratories and facilities for efficient single-shot probing of warm dense matter, medical imaging and the study of dynamic processes in matter with broad application to inertial confinement fusion and meso-scale materials (mg g/cm[Formula: see text]).
RESUMEN
Optical probing is an indispensable tool in research and development. In fact, it has always been the most natural way for humankind to explore nature. However, objects consisting of transparent materials with a refractive index close to unity, such as low-density gas jets, are a typical example of samples that often reach the sensitivity limits of optical probing techniques. We introduce an advanced optical probing method employing multiple passes of the probe through the object to increase phase sensitivity, and relay-imaging of the object between individual passes to preserve spatial resolution. An interferometer with four-passes was set up and the concept was validated by tomographic characterization of low-density supersonic gas jets. The results show an evident increase of sensitivity, which allows for the accurate quantitation of fine features such as a shock formed by an obstacle or a barrel shock on the jet boundary in low ambient gas pressures. Despite its limitations in temporal resolution, this novel method has demonstrated an increase in phase sensitivity in transmission, however, it can also be employed to boost the absorption or polarization contrast of weakly interacting objects in both transmission and reflection setups, thus, upgrading the sensitivity of various optical characterization methods.