Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Environ Res ; 218: 114948, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36455634

RESUMEN

Water usage increased alongside its competitiveness due to its finite amount. Yet, many industries still rely on this finite resource thus recalling the need to recirculate their water for production. Circular bioeconomy is presently the new approach emphasizing on the 'end-of-life' concept with reusing, recycling, and recovering materials. Microalgae are the ideal source contributing to circular bioeconomy as it exhibits fast growth and adaptability supported by biological rigidity which in turn consumes nutrients, making it an ideal and capable bioremediating agent, therefore allowing water re-use as well as its biomass potential in biorefineries. Nevertheless, there are challenges that still need to be addressed with consideration of recent advances in cultivating microalgae in wastewater. This review aimed to investigate the potential of microalgae biomass cultivated in wastewater. More importantly, how it'll play a role in the circular bioeconomy. This includes an in-depth look at the production of goods coming from wastes tattered by emerging pollutants. These emerging pollutants include microplastics, antibiotics, ever-increasingly sewage water, and heavy metals which have not been comprehensively compared and explored. Therefore, this review is aiming to bring new insights to researchers and industrial stakeholders with interest in green alternatives to eventually contribute towards environmental sustainability.


Asunto(s)
Contaminantes Ambientales , Microalgas , Aguas Residuales , Biodegradación Ambiental , Plásticos , Biomasa , Biocombustibles
2.
Environ Res ; 204(Pt A): 111966, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34450156

RESUMEN

Microalgae are drawing attentions among researchers for their biorefinery use or value-added products. The high production rate of biomasses produced are attractive for conversion into volatile biochar. Torrefaction, pyrolysis and hydrothermal carbonization are the recommended thermochemical conversion techniques that could produce microalgal-based biochar with desirable physiochemical properties such as high surface area and pore volume, abundant surface functional groups, as well as functionality such as high adsorption capacity. The characterizations of the biochar significantly influence the mechanisms in adsorption of pollutants from wastewaters. Specific adsorption of the organic and inorganic pollutants from the effluent are reviewed to examine the adsorption capacity and efficiency of biochar derived from different microalgae species. Last but not least, future remarks over the challenges and improvements are discussed accordingly. Overall, this review would discuss the synthesis, characterization and application of the microalgal-based biochar in wastewater.


Asunto(s)
Microalgas , Aguas Residuales , Adsorción , Carbón Orgánico
3.
Environ Res ; 214(Pt 2): 113854, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35841970

RESUMEN

Population inflation has led to the unprecedented increase in urbanization, thus causing negative impacts on environmental sustainability. Recently, there is an upsurge in the number of restaurants due to the changing lifestyles of the people round the globe. For instance, there were 167,490 food and beverage establishments in 2015, representing an annual growth rate of 5.1% since 2010 in Malaysia. The rapid growth of restaurants has implicated a negative impact due to the generation of highly polluted restaurant wastewater (RWW). RWW is mainly generated during the cooking, washing, and cleaning operations. RWW typically contain fat, oil, and grease (FOG) resulting from residues of meat, deep-fried food, baked items and butter, and has caused serious blockages of sewer due to clogging and eventually sewage backup. This has increased the required frequency of cleaning and sanitary sewer overflows (SSOs). Results from the previous studies have shown that FOG can be treated using physical, chemical, and biological processes. Different technologies have been applied for the treatment of FOG and other pollutants (COD, BOD, SS and NH4-N) present in RWW. Therefore, this review aims to provide an in-depth understanding of the characteristics of RWW, chemical and physical characteristics of FOG with the mechanism of its formation and utilization for biocomposites, biogas and biodiesel productions for circular bioeconomy. Besides, this review has discussed the potential treatment technologies comprehensively for RWW which is currently remain understudied. Integrated sustainable management of FOG with technoeconomic analysis of bioproducts, sustainable management with international initiatives and previous studies are also summarized. Hence, this review aims towards providing better alternatives in managing RWW at sources, including its treatment and potential of its biorefinery, therefore eventually contributing towards environmental sustainability.


Asunto(s)
Restaurantes , Aguas Residuales , Ambiente , Grasas/análisis , Grasas/química , Humanos , Hidrocarburos/análisis , Aguas del Alcantarillado/química , Aguas Residuales/análisis
4.
Bioresour Technol ; 372: 128661, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36690215

RESUMEN

Microalgae are photoautotrophic microorganisms which comprise of species from several phyla. Microalgae are promising in producing a varieties of products, including food, feed supplements, chemicals, and biofuels. Medicinal supplements derived from microalgae are of a significant market in which compounds such as -carotene, astaxanthin, polyunsaturated fatty acids (PUFA) such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), and polysaccharides such as -glucan, are prominent. Microalgae species which are commonly applied for commercial productions include Isochrysis sp., Chaetoceros (Chlorella sp.), Arthrospira sp. (Spirulina Bioactive) and many more. In this present review, microalgae species which are feasible in metabolites production are being summarized. Metabolites produced by microalgae as well as their prospective applications in the healthcare and pharmaceutical industries, are comprehensively discussed. This evaluation is greatly assisting industrial stakeholders, investors, and researchers in making business decisions, investing in ventures, and moving the production of microalgae-based metabolites forward.


Asunto(s)
Chlorella , Microalgas , Microalgas/metabolismo , Ácido Eicosapentaenoico , Industria Farmacéutica , Atención a la Salud
5.
Trends Biotechnol ; 40(12): 1439-1453, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36216714

RESUMEN

Excessive carbon dioxide (CO2) emissions into the atmosphere have become a dire threat to the human race and environmental sustainability. The ultimate goal of net zero emissions requires combined efforts on CO2 sequestration (natural sinks, biomass fixation, engineered approaches) and reduction in CO2 emissions while delivering economic growth (CO2 valorization for a circular carbon bioeconomy, CCE). We discuss microalgae-based CO2 biosequestration, including flue gas cultivation, biotechnological approaches for enhanced CO2 biosequestration, technological innovations for microalgal cultivation, and CO2 valorization/biofuel productions. We highlight challenges to current practices and future perspectives with the goal of contributing to environmental sustainability, net zero emissions, and the CCE.


Asunto(s)
Microalgas , Humanos , Dióxido de Carbono , Biotecnología , Biomasa , Biocombustibles
6.
Bioengineered ; 13(6): 14681-14718, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35946342

RESUMEN

Arthrospira platensis (A. platensis) aqueous extract has massive amounts of natural products that can be used as future drugs, such as C-phycocyanin, allophycocyanin, etc. This extract was chosen because of its high adaptability, which reflects its resolute genetic composition. The proactive roles of cyanobacteria, particularly in the medical field, have been discussed in this review, including the history, previous food and drug administration (FDA) reports, health benefits and the various dose-dependent therapeutic functions that A. platensis possesses, including its role in fighting against lethal diseases such as cancer, SARS-CoV-2/COVID-19, etc. However, the remedy will not present its maximal effect without the proper delivery to the targeted place for deposition. The goal of this research is to maximize the bioavailability and delivery efficiency of A. platensis constituents through selected sites for effective therapeutic outcomes. The solutions reviewed are mainly on parenteral and tablet formulations. Moreover, suggested enteric polymers were discussed with minor composition variations applied for better storage in high humid countries alongside minor variations in the polymer design were suggested to enhance the premature release hindrance of basic drugs in low pH environments. In addition, it will open doors for research in delivering active pharmaceutical ingredients (APIs) in femtoscale with the use of various existing and new formulations.Abbrevations: SDGs; Sustainable Development Goals, IL-4; Interleukin-4, HDL; High-Density Lipoprotein, LDL; Low-Density Lipoprotein, VLDL; Very Low-Density Lipoprotein, C-PC; C-Phycocyanin, APC; Allophycocyanin, PE; Phycoerythrin, COX-2; Cyclooxygenase-2, RCTs; Randomized Control Trials, TNF-α; Tumour Necrosis Factor-alpha, γ-LFA; Gamma-Linolenic Fatty Acid, PGs; Polyglycans, PUFAs: Polyunsaturated Fatty Acids, NK-cell; Natural Killer Cell, FDA; Food and Drug Administration, GRAS; Generally Recognized as Safe, SD; Standard Deviation, API; Active Pharmaceutical Ingredient, DW; Dry Weight, IM; Intramuscular, IV; Intravenous, ID; Intradermal, SC; Subcutaneous, AERs; Adverse Event Reports, DSI-EC; Dietary Supplement Information Executive Committee, cGMP; Current Good Manufacturing Process, A. platensis; Arthrospira platensis, A. maxima; Arthrospira maxima, Spirulina sp.; Spirulina species, Arthrospira; Spirulina, Tecuitlatl; Spirulina, CRC; Colorectal Cancer, HDI; Human Development Index, Tf; Transferrin, TfR; Transferrin Receptor, FR; Flow Rate, CPP; Cell Penetrating Peptide, SUV; Small Unilamenar Vesicle, LUV; Large Unilamenar Vesicle, GUV; Giant Unilamenar Vesicle, MLV; Multilamenar Vesicle, COVID-19; Coronavirus-19, PEGylated; Stealth, PEG; Polyethylene Glycol, OSCEs; Objective Structured Clinical Examinations, GI; Gastrointestinal Tract, CAP; Cellulose Acetate Phthalate, HPMCP, Hydroxypropyl Methyl-Cellulose Phthalate, SR; Sustained Release, DR; Delay Release, Poly(MA-EA); Polymethyl Acrylic Co-Ethyl Acrylate, f-DR L-30 D-55; Femto-Delay Release Methyl Acrylic Acid Co-Ethyl Acrylate Polymer, MW; Molecular Weight, Tg; Glass Transition Temperature, SN2; Nucleophilic Substitution 2, EPR; Enhance Permeability and Retention, VEGF; Vascular Endothelial Growth Factor, RGD; Arginine-Glycine-Aspartic Acid, VCAM-1; Vascular Cell Adhesion Molecule-1, P; Coefficient of Permeability, PES; Polyether Sulfone, pHe; Extracellular pH, ζ-potential; Zeta potential, NTA; Nanoparticle Tracking Analysis, PB; Phosphate Buffer, DLS; Dynamic Light Scattering, AFM; Atomic Force Microscope, Log P; Partition Coefficient, MR; Molar Refractivity, tPSA; Topological Polar Surface Area, C log P; Calculated Partition Coefficient, CMR; Calculated Molar Refractivity, Log S; Solubility Coefficient, pka; Acid Dissociation Constant, DDAB; Dimethyl Dioctadecyl Ammonium Bromide, DOPE; Dioleoylphosphatidylethanolamine, GDP; Good Distribution Practice, RES; Reticuloendothelial System, PKU; Phenylketonuria, MS; Multiple Sclerosis, SLE; Systemic Lupus Erythematous, NASA; National Aeronautics and Space Administration, DOX; Doxorubicin, ADRs; Adverse Drug Reactions, SVM; Support Vector Machine, MDA; Malondialdehyde, TBARS; Thiobarbituric Acid Reactive Substances, CRP; C-Reactive Protein, CK; Creatine Kinase, LDH; Lactated Dehydrogenase, T2D; Type 2 Diabetes, PCB; Phycocyanobilin, PBP; Phycobiliproteins, PEB; Phycoerythrobilin, DPP-4; Dipeptidyl Peptidase-4, MTT; 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide, IL-2; Interleukin-2, IL-6; Interleukin-6, PRISMA; Preferred Reporting Items for Systematic Reviews and Meta-Analyses, STATA; Statistics, HepG2; Hepatoblastoma, HCT116; Colon Cancer Carcinoma, Kasumi-1; Acute Leukaemia, K562; Chronic Leukaemia, Se-PC; Selenium-Phycocyanin, MCF-7; Breast Cancer Adenocarcinoma, A375; Human Melanoma, RAS; Renin-Angiotensin System, IQP; Ile-Gln-Pro, VEP; Val-Glu-Pro, Mpro; Main Protease, PLpro; Papin-Like Protease, BMI; Body Mass Index, IC50; Inhibitory Concentration by 50%, LD50; Lethal Dose by 50%, PC12 Adh; Rat Pheochromocytoma Cells, RNS; Reactive Nitrogen Species, Hb1Ac; hemoglobin A1c.


Increase awareness of the impact and multi-disciplinary up-to-date roles of A. platensis on human lives and the importance of having further research on microalgae.Soliciting a critical analysis study on A. platensis biocomposition for drug delivery research.Insights on the correlation between ionization and drug bioavailability in specific sites in the human body.Offering solutions for improvising an optimized 'Advanced Spirulina Dosage Forms' products to maximize A. platensis therapeutic/pharmacological outcomes.Insights on existing biomaterials for optimization.


Asunto(s)
COVID-19 , Diabetes Mellitus Tipo 2 , Leucemia , Spirulina , Humanos , Lipoproteínas LDL/metabolismo , Péptido Hidrolasas/metabolismo , Preparaciones Farmacéuticas/metabolismo , Ficocianina/química , Polímeros/metabolismo , SARS-CoV-2 , Spirulina/química , Spirulina/metabolismo , Resultado del Tratamiento , Estados Unidos , Factor A de Crecimiento Endotelial Vascular/metabolismo
7.
Chemosphere ; 303(Pt 1): 134749, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35490754

RESUMEN

Groundwater is the second largest water source for daily consumption, only next to surface water resources. Groundwater has been extensively investigated for its pollution level in urban areas. The groundwater quality assessments in industrial areas associated with every urban landscape are still lacking. This study was carried out in two industrial areas including Okhla and Mohan cooperative in New Delhi, India. The six groundwater samples were obtained for water quality assessment for 2015 and 2018. The heavy metals investigated in water samples were Cu, As, Pb, Mn, Ni, Zn, Fe, Cr, and Mn. The water quality was assessed in the heavy metals index (MI) and heavy metal pollution index (HPI). From indexing approach, it was observed that pollution levels have increased in year 2018 as compared to the year 2015. MI < 1 for Cu in 2015 and 2018 in both industrial areas. In the case of remaining metals, MI ranged from 2.5 to 8.4. When the HPI indexing approach was adopted, water was unfit for drinking in both industrial areas in 2015 and 2018, with an HPI value > 100. Non-carcinogenic risk assessment (HI) ranged from 1.7 to 1.9 in 2015, increasing from 17.41 to 217 in 2018, indicating high risk in both years. Carcinogenic risk (CR) was within the acceptable range for 48% of each heavy metal analysed sample. When the Carcinogenic risk index was considered (CRI), all samples were beyond the acceptable range, and every person was prone to carcinogenic risk in 2015.


Asunto(s)
Agua Subterránea , Metales Pesados , Contaminantes Químicos del Agua , Carcinógenos/análisis , Monitoreo del Ambiente , Agua Subterránea/análisis , Humanos , Metales Pesados/análisis , Medición de Riesgo , Contaminantes Químicos del Agua/análisis , Calidad del Agua
8.
Environ Pollut ; 278: 116836, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33689952

RESUMEN

The remarkable journey of progression of mankind has created various impacts in the form of polluted environment, amassed heavy metals and depleting resources. This alarming situation demands sustainable energy resources and approaches to deal with these environmental hazards and power deficit. Pyrolysis and co-pyrolysis address both energy and environmental issues caused by civilization and industrialization. The processes use hazardous waste materials including waste tires, plastic and medical waste, and biomass waste such as livestock waste and agricultural waste as feedstock to produce gas, char and pyrolysis oil for energy production. Usage of hazardous materials as pyrolysis and co-pyrolysis feedstock reduces disposal of harmful substances into environment, reducing occurrence of soil and water pollution, and substituting the non-renewable feedstock, fossil fuels. As compared to combustion, pyrolysis and co-pyrolysis have less emission of air pollutants and act as alternative options to landfill disposal and incineration for hazardous materials and biomass waste. Hence, stabilizing heavy metals and solving the energy and waste management problems. This review discusses the pyrolysis and co-pyrolysis of biomass and harmful wastes to strive towards circular economy and eco-friendly, cleaner energy with minimum waste disposal, reducing negative impact on the planet and creating future possibilities.


Asunto(s)
Pirólisis , Eliminación de Residuos , Biomasa , Sustancias Peligrosas , Incineración
9.
Bioresour Technol ; 320(Pt A): 124299, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33129091

RESUMEN

Hydrogen and gaseous fuel derived from wastes have opened up promising alternative pathways for the production of renewable and sustainable fuels to substitute classical fossil energy resources that cause global warming and pollution. Existing review articles focus mostly on gasification, reforming and pyrolysis processes, with limited information on particularly gaseous fuel production via pyrolysis of various waste products. This review provides an overview on the recent advanced pyrolysis technology used in hydrogen and gaseous fuel production. The key parameters to maximize the production of specific compounds were discussed. More studies are needed to optimize the process parameters and improve the understanding of reaction mechanisms and co-relationship between these advanced techniques. These advanced techniques provide novel environmentally sustainable and commercially procedures for waste-based production of hydrogen and gaseous fuels.


Asunto(s)
Hidrógeno , Pirólisis , Residuos
10.
Bioengineered ; 11(1): 61-69, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-31884878

RESUMEN

Chlorella sorokiniana CY-1 was cultivated using palm oil mill effluent (POME) in a novel-designed photobioreactor (NPBR) and glass-made vessel photobioreactor (PBR). The comparison was made on biomass and lipid productions, as well as its pollutants removal efficiencies. NPBR is transparent and is developed in thin flat panels with a high surface area per volume ratio. It is equipped with microbubbling and baffles retention, ensuring effective light and CO2 utilization. The triangular shape of this reactor at the bottom serves to ease microalgae cell harvesting by sedimentation. Both biomass and lipid yields attained in NPBR were 2.3-2.9 folds higher than cultivated in PBR. The pollutants removal efficiencies achieved were 93.7% of chemical oxygen demand, 98.6% of total nitrogen and 96.0% of total phosphorus. Mathematical model revealed that effective light received and initial mass contributes toward successful microalgae cultivation. Overall, the results revealed the potential of NPBR integration in Chlorella sorokiniana CY-1 cultivation, with an aim to achieve greater feasibility in microalgal-based biofuel real application and for environmental sustainability.


Asunto(s)
Biotecnología/métodos , Chlorella/metabolismo , Lípidos/biosíntesis , Microalgas/metabolismo , Aceite de Palma/metabolismo , Biocombustibles/análisis , Biomasa , Biotecnología/instrumentación , Chlorella/crecimiento & desarrollo , Medios de Cultivo/metabolismo , Microalgas/crecimiento & desarrollo , Nitrógeno/metabolismo , Fósforo/metabolismo , Fotobiorreactores
11.
Int J Biol Macromol ; 126: 569-577, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30584947

RESUMEN

The electrospinning PAN nanofiber membrane (P-CN) was hydrolysed to convert carboxylic groups as reaction sites and covalently graft chitosan molecule. The chitosan derivatives with quaternary ammonium groups exerted greater efficiency against bacteria as compared to pure chitosan. Hence, the chitosan modified membrane (P-CS), can be functionalized with quaternary amine (i.e., glycidyl trimethyl ammonium chloride, GTMAC) to form quaternized chitosan nanofiber membrane (designated as P-HTCC) under various conditions (acidic, neutral, and alkaline). N-quaternized derivatives of chitosan modified membrane (N-HTCC) showed 72% and 60% degree of quaternization (DQ) under acidic and neutral conditions, respectively. Under alkaline condition, additional quaternization of N, O-HTCC via its amino and hydroxyl groups, has improved up to 90% DQ of the chitosan. The antibacterial activity of the quaternized chitosan modified membrane prepared from acetic acid medium is stronger than that prepared from water and alkaline media. Also, antibacterial activity of quaternized chitosan is stronger than chitosan modified membrane against E. coli. The microbiological assessments showed that the water-stable P-HTCC nanofiber membrane under modification in acidic medium exerted antibacterial activity up to 99.95% against E. coli. Therefore, the P-HTCC membrane exhibited high potential to be integrated into microfiltration membrane to effectively disinfect E. coli.


Asunto(s)
Antibacterianos/farmacología , Quitosano/farmacología , Compuestos Epoxi/química , Membranas Artificiales , Nanofibras/química , Compuestos de Amonio Cuaternario/química , Resinas Acrílicas/química , Escherichia coli/efectos de los fármacos , Intercambio Iónico , Pruebas de Sensibilidad Microbiana , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría
12.
Bioresour Technol ; 253: 1-7, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29328929

RESUMEN

In this study, Nannochloropsis oceanica CY2 was grown in deep-sea water (DSW)-based medium in 5-L plastic bag-type photobioreactors (PBRs) for the autotrophic production of Eicosapentaenoic acid (EPA, 20:5n-3). EPA production of N. oceanica CY2 was stimulated when it was grown in 100% DSW amended with 1.5 g L-1 NaNO3, achieving a EPA content of 3.1% and a biomass concentration of 3.3 g L-1. An outdoor-simulated microalgae cultivation system was also conducted to validate the feasibility of outdoor cultivation of the CY2 strain in plastic bag-type PBRs. Using an inoculum size of 0.6 g/L, the biomass concentration in the PBR culture was 3.5 g L-1, while the EPA content and productivity reached a maximal level of 4.12% and 7.49 mg L-1 d-1, respectively. When the PBRs were operated on semi-batch mode, the EPA productivity could further increase to 9.9 mg L-1 d-1 with a stable EPA content of 4.1%.


Asunto(s)
Ácido Eicosapentaenoico , Fotobiorreactores , Biomasa , Microalgas , Agua de Mar , Estramenopilos , Agua
13.
Bioresour Technol ; 215: 346-356, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27090405

RESUMEN

Greenhouse gas emissions have several adverse environmental effects, like pollution and climate change. Currently applied carbon capture and storage (CCS) methods are not cost effective and have not been proven safe for long term sequestration. Another attractive approach is CO2 valorization, whereby CO2 can be captured in the form of biomass via photosynthesis and is subsequently converted into various form of bioenergy. This article summarizes the current carbon sequestration and utilization technologies, while emphasizing the value of bioconversion of CO2. In particular, CO2 sequestration by terrestrial plants, microalgae and other microorganisms are discussed. Prospects and challenges for CO2 conversion are addressed. The aim of this review is to provide comprehensive knowledge and updated information on the current advances in biological CO2 sequestration and valorization, which are essential if this approach is to achieve environmental sustainability and economic feasibility.


Asunto(s)
Biodegradación Ambiental , Dióxido de Carbono/aislamiento & purificación , Secuestro de Carbono , Carbono/metabolismo , Cambio Climático , Conservación de los Recursos Energéticos/métodos , Animales , Bioingeniería/tendencias , Biocombustibles , Biomasa , Humanos , Microalgas , Fotosíntesis
14.
Bioresour Technol ; 184: 190-201, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25497054

RESUMEN

The unceasing rise of greenhouse gas emission has led to global warming and climate change. Global concern on this phenomenon has put forward the microalgal-based CO2 sequestration aiming to sequester carbon back to the biosphere, ultimately reducing greenhouse effects. Microalgae have recently gained enormous attention worldwide, to be the valuable feedstock for renewable energy production, due to their high growth rates, high lipid productivities and the ability to sequester carbon. The photosynthetic process of microalgae uses atmospheric CO2 and CO2 from flue gases, to synthesize nutrients for their growth. In this review article, we will primarily discuss the efficiency of CO2 biosequestration by microalgae species, factors influencing microalgal biomass productions, microalgal cultivation systems, the potential and limitations of using flue gas for microalgal cultivation as well as the bio-refinery approach of microalgal biomass.


Asunto(s)
Atmósfera/química , Dióxido de Carbono/metabolismo , Secuestro de Carbono , Microalgas/metabolismo , Biodegradación Ambiental/efectos de los fármacos , Secuestro de Carbono/efectos de los fármacos , Microalgas/efectos de los fármacos , Microalgas/crecimiento & desarrollo , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA