Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Biol Rep ; 49(9): 8977-8985, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35429317

RESUMEN

Plants are subjected to biotic and abiotic stresses regularly, which irreparably harm agricultural production. Eco-friendly and sustainable technology to deal with this challenge is to breed abiotic stress tolerant cultivars. To generate crop plants conferring resistance against stresses, conventional breeding was used in the past, but because of the complex heredity of abiotic stress tolerance traits, such techniques remain insufficient in making greater enhancement. Genome-engineering based on CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR associated protein9) has shown enormous potential in developing climate-resilient cultivars. Likewise, the development of chickpea transgenic lines by knockout of 4CL and REV7 genes exhibits drought tolerance which establishes a foundation for future studies in chickpea. In addition, the CRISPR-Cas9 system can boost yield potential under abiotic stress situations by producing non-transgenic plants having the required characteristics. This review article discusses the validation of gene function based on the CRISPR-Cas9 for the development of abiotic stress-tolerant crop plants, emphasizing the chickpea to open the new ventures of generating abiotic stress-tolerant chickpea varieties.


Asunto(s)
Cicer , Sistemas CRISPR-Cas/genética , Cicer/genética , Fitomejoramiento , Plantas , Estrés Fisiológico/genética
2.
Plants (Basel) ; 10(10)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34685812

RESUMEN

Radish, one of the important root vegetables, is widely grown in the world due to its easy cultivation, short duration, growing habit, and adaptability to various growing conditions. However, it is still extremely difficult to produce good quality radish roots due to its vulnerability to different preharvest physiological disorders. Important physiological disorders that significantly reduce the yield and quality of radish are forking, pithiness/sponginess, cracking/splitting, hollowness, and internal browning. Different abiotic factors like moisture stress, temperature fluctuation, growing medium, nutrient imbalance, plant density and harvesting time cause a disturbance in the metabolic activities of root tissues that produce non-marketable roots. Therefore, this review provides a detail insight on the causes, physiology of these disorders, and the management practices to prevent them to produce commercial quality roots. This comprehensive knowledge will not only help the growers, but it will provide relative information for researchers as well to control these disorders through breeding innovations and biotechnological tools.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA