Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35110408

RESUMEN

Domoic acid (DA), the causative agent of amnesic shellfish poisoning, is produced by select organisms within two distantly related algal clades: planktonic diatoms and red macroalgae. The biosynthetic pathway to isodomoic acid A was recently solved in the harmful algal bloom-forming diatom Pseudonitzschia multiseries, establishing the genetic basis for the global production of this potent neurotoxin. Herein, we sequenced the 507-Mb genome of Chondria armata, the red macroalgal seaweed from which DA was first isolated in the 1950s, identifying several copies of the red algal DA (rad) biosynthetic gene cluster. The rad genes are organized similarly to the diatom DA biosynthesis cluster in terms of gene synteny, including a cytochrome P450 (CYP450) enzyme critical to DA production that is notably absent in red algae that produce the simpler kainoid neurochemical, kainic acid. The biochemical characterization of the N-prenyltransferase (RadA) and kainoid synthase (RadC) enzymes support a slightly altered DA biosynthetic model in C. armata via the congener isodomoic acid B, with RadC behaving more like the homologous diatom enzyme despite higher amino acid similarity to red algal kainic acid synthesis enzymes. A phylogenetic analysis of the rad genes suggests unique origins for the red macroalgal and diatom genes in their respective hosts, with native eukaryotic CYP450 neofunctionalization combining with the horizontal gene transfer of N-prenyltransferases and kainoid synthases to establish DA production within the algal lineages.


Asunto(s)
Dimetilaliltranstransferasa/genética , Dimetilaliltranstransferasa/metabolismo , Ácido Kaínico/análogos & derivados , Neurotoxinas/metabolismo , Rhodophyta/metabolismo , Evolución Biológica , Vías Biosintéticas/genética , Diatomeas/genética , Diatomeas/metabolismo , Floraciones de Algas Nocivas/fisiología , Ácido Kaínico/metabolismo , Familia de Multigenes/genética , Neurotoxinas/genética , Filogenia , Intoxicación por Mariscos/metabolismo
2.
Nat Prod Rep ; 41(7): 1020-1059, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38411572

RESUMEN

Covering 1965 to February 2024Plants are prolific peptide chemists and are known to make thousands of different peptidic molecules. These peptides vary dramatically in their size, chemistry, and bioactivity. Despite their differences, all plant peptides to date are biosynthesized as ribosomally synthesized and post-translationally modified peptides (RiPPs). Decades of research in plant RiPP biosynthesis have extended the definition and scope of RiPPs from microbial sources, establishing paradigms and discovering new families of biosynthetic enzymes. The discovery and elucidation of plant peptide pathways is challenging due to repurposing and evolution of housekeeping genes as both precursor peptides and biosynthetic enzymes and due to the low rates of gene clustering in plants. In this review, we highlight the chemistry, biosynthesis, and function of the known RiPP classes from plants and recommend a nomenclature for the recent addition of BURP-domain-derived RiPPs termed burpitides. Burpitides are an emerging family of cyclic plant RiPPs characterized by macrocyclic crosslinks between tyrosine or tryptophan side chains and other amino acid side chains or their peptide backbone that are formed by copper-dependent BURP-domain-containing proteins termed burpitide cyclases. Finally, we review the discovery of plant RiPPs through bioactivity-guided, structure-guided, and gene-guided approaches.


Asunto(s)
Péptidos , Plantas , Procesamiento Proteico-Postraduccional , Ribosomas , Ribosomas/metabolismo , Péptidos/química , Péptidos/metabolismo , Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Estructura Molecular
3.
Nat Prod Rep ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38629495

RESUMEN

Covering: 1970 through June of 2023Verticillins are epipolythiodioxopiperazine (ETP) alkaloids, many of which possess potent, nanomolar-level cytotoxicity against a variety of cancer cell lines. Over the last decade, their in vivo activity and mode of action have been explored in detail. Notably, recent studies have indicated that these compounds may be selective inhibitors of histone methyltransferases (HMTases) that alter the epigenome and modify targets that play a crucial role in apoptosis, altering immune cell recognition, and generating reactive oxygen species. Verticillin A (1) was the first of 27 analogues reported from fungal cultures since 1970. Subsequent genome sequencing identified the biosynthetic gene cluster responsible for producing verticillins, allowing a putative pathway to be proposed. Further, molecular sequencing played a pivotal role in clarifying the taxonomic characterization of verticillin-producing fungi, suggesting that most producing strains belong to the genus Clonostachys (i.e., Bionectria), Bionectriaceae. Recent studies have explored the total synthesis of these molecules and the generation of analogues via both semisynthetic and precursor-directed biosynthetic approaches. In addition, nanoparticles have been used to deliver these molecules, which, like many natural products, possess challenging solubility profiles. This review summarizes over 50 years of chemical and biological research on this class of fungal metabolites and offers insights and suggestions on future opportunities to push these compounds into pre-clinical and clinical development.

4.
Beilstein J Org Chem ; 20: 1548-1559, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015620

RESUMEN

In recent years, genome and transcriptome mining have dramatically expanded the rate of discovering diverse natural products from bacteria and fungi. In plants, this approach is often more limited due to the lack of available annotated genomes and transcriptomes combined with a less consistent clustering of biosynthetic genes. The recently identified burpitide class of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products offer a valuable opportunity for bioinformatics-guided discovery in plants due to their short biosynthetic pathways and gene encoded substrates. Using a high-throughput approach to assemble and analyze 700 publicly available raw transcriptomic data sets, we uncover the potential distribution of split burpitide precursor peptides in Streptophyta. Metabolomic analysis of target plants confirms our bioinformatic predictions of new cyclopeptide alkaloids from both known and new sources.

5.
Proc Natl Acad Sci U S A ; 117(23): 12799-12805, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32457155

RESUMEN

Prenylation is a common biological reaction in all domains of life wherein prenyl diphosphate donors transfer prenyl groups onto small molecules as well as large proteins. The enzymes that catalyze these reactions are structurally distinct from ubiquitous terpene cyclases that, instead, assemble terpenes via intramolecular rearrangements of a single substrate. Herein, we report the structure and molecular details of a new family of prenyltransferases from marine algae that repurposes the terpene cyclase structural fold for the N-prenylation of glutamic acid during the biosynthesis of the potent neurochemicals domoic acid and kainic acid. We solved the X-ray crystal structure of the prenyltransferase found in domoic acid biosynthesis, DabA, and show distinct active site binding modifications that remodel the canonical magnesium (Mg2+)-binding motif found in terpene cyclases. We then applied our structural knowledge of DabA and a homologous enzyme from the kainic acid biosynthetic pathway, KabA, to reengineer their isoprene donor specificities (geranyl diphosphate [GPP] versus dimethylallyl diphosphate [DMAPP]) with a single amino acid change. While diatom DabA and seaweed KabA enzymes share a common evolutionary lineage, they are distinct from all other terpene cyclases, suggesting a very distant ancestor to the larger terpene synthase family.


Asunto(s)
Transferasas Alquil y Aril/química , Diatomeas/enzimología , Dimetilaliltranstransferasa/química , Ácido Kaínico/análogos & derivados , Neurotoxinas/biosíntesis , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Sustitución de Aminoácidos , Sitios de Unión , Diatomeas/metabolismo , Dimetilaliltranstransferasa/genética , Dimetilaliltranstransferasa/metabolismo , Ácido Glutámico/metabolismo , Ácido Kaínico/metabolismo , Magnesio/metabolismo , Prenilación , Unión Proteica
6.
Angew Chem Int Ed Engl ; 62(7): e202218082, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36529706

RESUMEN

Cyclopeptide alkaloids are an abundant class of plant cyclopeptides with over 200 analogs described and bioactivities ranging from analgesic to antiviral. While these natural products have been known for decades, their biosynthetic basis remains unclear. Using a transcriptome-mining approach, we link the cyclopeptide alkaloids from Ceanothus americanus to dedicated RiPP precursor peptides and identify new, widely distributed split BURP peptide cyclase containing gene clusters. Guided by our bioinformatic analysis, we identify and isolate new cyclopeptides from Coffea arabica, which we named arabipeptins. Reconstitution of the enzyme activity for the BURP found in the biosynthesis of arabipeptin A validates the activity of the newly discovered split BURP peptide cyclases. These results expand our understanding of the biosynthetic pathways responsible for diverse cyclic plant peptides and suggest that these side chain cross-link modifications are widely distributed in eudicots.


Asunto(s)
Productos Biológicos , Péptidos Cíclicos , Péptidos Cíclicos/metabolismo , Péptidos/química , Biología Computacional , Procesamiento Proteico-Postraduccional , Productos Biológicos/química , Vías Biosintéticas/genética
7.
Biochemistry ; 61(17): 1844-1852, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35985031

RESUMEN

Vanadium-dependent haloperoxidases (VHPOs) from Streptomyces bacteria differ from their counterparts in fungi, macroalgae, and other bacteria by catalyzing organohalogenating reactions with strict regiochemical and stereochemical control. While this group of enzymes collectively uses hydrogen peroxide to oxidize halides for incorporation into electron-rich organic molecules, the mechanism for the controlled transfer of highly reactive chloronium ions in the biosynthesis of napyradiomycin and merochlorin antibiotics sets the Streptomyces vanadium-dependent chloroperoxidases apart. Here we report high-resolution crystal structures of two homologous VHPO family members associated with napyradiomycin biosynthesis, NapH1 and NapH3, that catalyze distinctive chemical reactions in the construction of meroterpenoid natural products. The structures, combined with site-directed mutagenesis and intact protein mass spectrometry studies, afforded a mechanistic model for the asymmetric alkene and arene chlorination reactions catalyzed by NapH1 and the isomerase activity catalyzed by NapH3. A key lysine residue in NapH1 situated between the coordinated vanadate and the putative substrate binding pocket was shown to be essential for catalysis. This observation suggested the involvement of the ε-NH2, possibly through formation of a transient chloramine, as the chlorinating species much as proposed in structurally distinct flavin-dependent halogenases. Unexpectedly, NapH3 is modified post-translationally by phosphorylation of an active site His (τ-pHis) consistent with its repurposed halogenation-independent, α-hydroxyketone isomerase activity. These structural studies deepen our understanding of the mechanistic underpinnings of VHPO enzymes and their evolution as enantioselective biocatalysts.


Asunto(s)
Streptomyces , Vanadio , Antibacterianos/química , Catálisis , Isomerasas , Vanadio/química
8.
J Am Chem Soc ; 144(21): 9372-9379, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35583956

RESUMEN

Harmful cyanobacterial blooms (cyanoHABs) cause recurrent toxic events in global watersheds. Although public health agencies monitor the causal toxins of most cyanoHABs and scientists in the field continue developing precise detection and prediction tools, the potent anticholinesterase neurotoxin, guanitoxin, is not presently environmentally monitored. This is largely due to its incompatibility with widely employed analytical methods and instability in the environment, despite guanitoxin being among the most lethal cyanotoxins. Here, we describe the guanitoxin biosynthesis gene cluster and its rigorously characterized nine-step metabolic pathway from l-arginine in the cyanobacterium Sphaerospermopsis torques-reginae ITEP-024. Through environmental sequencing data sets, guanitoxin (gnt) biosynthetic genes are repeatedly detected and expressed in municipal freshwater bodies that have undergone past toxic events. Knowledge of the genetic basis of guanitoxin biosynthesis now allows for environmental, biosynthetic gene monitoring to establish the global scope of this neurotoxic organophosphate.


Asunto(s)
Cianobacterias , Cianobacterias/genética , Cianobacterias/metabolismo , Toxinas de Cianobacterias , Monitoreo del Ambiente , Agua Dulce , Familia de Multigenes
9.
Proc Natl Acad Sci U S A ; 116(48): 24049-24055, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31719203

RESUMEN

Enzymes that generate ribosomally synthesized and posttranslationally modified peptide (RiPP) natural products have garnered significant interest, given their ability to produce large libraries of chemically diverse scaffolds. Such RiPP biosynthetic enzymes are predicted to bind their corresponding peptide substrates through sequence-specific recognition of the leader sequence, which is removed after the installation of posttranslational modifications on the core sequence. The conservation of the leader sequence within a given RiPP class, in otherwise disparate precursor peptides, further supports the notion that strict sequence specificity is necessary for leader peptide engagement. Here, we demonstrate that leader binding by a biosynthetic enzyme in the lasso peptide class of RiPPs is directed by a minimal number of hydrophobic interactions. Biochemical and structural data illustrate how a single leader-binding domain can engage sequence-divergent leader peptides using a conserved motif that facilitates hydrophobic packing. The presence of this simple motif in noncognate peptides results in low micromolar affinity binding by binding domains from several different lasso biosynthetic systems. We also demonstrate that these observations likely extend to other RiPP biosynthetic classes. The portability of the binding motif opens avenues for the engineering of semisynthetic hybrid RiPP products.


Asunto(s)
Modelos Moleculares , Biosíntesis de Péptidos , Secuencia de Aminoácidos , Sitios de Unión , Secuencia Conservada , Procesamiento Proteico-Postraduccional
10.
Proc Natl Acad Sci U S A ; 116(27): 13299-13304, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31209034

RESUMEN

The synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) is an active ingredient of thousands of commercial herbicides. Multiple species of bacteria degrade 2,4-D via a pathway initiated by the Fe(II) and α-ketoglutarate (Fe/αKG)-dependent aryloxyalkanoate dioxygenases (AADs). Recently, genes encoding 2 AADs have been deployed commercially in herbicide-tolerant crops. Some AADs can also inactivate chiral phenoxypropionate and aryloxyphenoxypropionate (AOPP) herbicides, albeit with varying substrate enantioselectivities. Certain AAD enzymes, such as AAD-1, have expanded utility in weed control systems by enabling the use of diverse modes of action with a single trait. Here, we report 1) the use of a genomic context-based approach to identify 59 additional members of the AAD class, 2) the biochemical characterization of AAD-2 from Bradyrhizobium diazoefficiens USDA 110 as a catalyst to degrade (S)-stereoisomers of chiral synthetic auxins and AOPP herbicides, 3) spectroscopic data that demonstrate the canonical ferryl complex in the AAD-1 reaction, and 4) crystal structures of representatives of the AAD class. Structures of AAD-1, an (R)-enantiomer substrate-specific enzyme, in complexes with a phenoxypropionate synthetic auxin or with AOPP herbicides and of AAD-2, which has the opposite (S)-enantiomeric substrate specificity, reveal the structural basis for stereoselectivity and provide insights into a common catalytic mechanism.


Asunto(s)
Dioxigenasas/metabolismo , Resistencia a los Herbicidas , Herbicidas/metabolismo , Proteínas de Plantas/metabolismo , Ácido 2,4-Diclorofenoxiacético/metabolismo , Dioxigenasas/química , Herbicidas/química , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/química , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/metabolismo , Estructura Terciaria de Proteína , Glycine max , Estereoisomerismo , Relación Estructura-Actividad , Zea mays
11.
Angew Chem Int Ed Engl ; 61(45): e202212301, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36125917

RESUMEN

While natural products isolated from plants have historically been an important source of bioactive molecules, elucidating their biosynthetic pathways has remained a challenging process. Strychnine is the one such compound known for its neurotoxicity and use as a rodent pesticide. Considerable interest has been shown in the synthesis of strychnine for many decades, yet little was known about its biosynthesis. A recent report from the O'Connor lab has solved this long-standing puzzle using modern transcriptomics and transient expression approaches to uncover each enzyme responsible for the production of strychnine along with an unexpected final non-enzymatic step.


Asunto(s)
Alcaloides , Productos Biológicos , Estricnina , Alcaloides/metabolismo , Vías Biosintéticas , Plantas/metabolismo , Productos Biológicos/metabolismo
12.
Nat Prod Rep ; 38(11): 2100-2129, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34734626

RESUMEN

Covering: 2016 to 2021With genetic information available for hundreds of thousands of organisms in publicly accessible databases, scientists have an unprecedented opportunity to meticulously survey the diversity and inner workings of life. The natural product research community has harnessed this breadth of sequence information to mine microbes, plants, and animals for biosynthetic enzymes capable of producing bioactive compounds. Several orthogonal genome mining strategies have been developed in recent years to target specific chemical features or biological properties of bioactive molecules using biosynthetic, resistance, or transporter proteins. These "biosynthetic hooks" allow researchers to query for biosynthetic gene clusters with a high probability of encoding previously undiscovered, bioactive compounds. This review highlights recent case studies that feature orthogonal approaches that exploit genomic information to specifically discover bioactive natural products and their gene clusters.


Asunto(s)
Productos Biológicos/aislamiento & purificación , Descubrimiento de Drogas , Genómica/métodos , Antibacterianos/aislamiento & purificación , Productos Biológicos/química , Productos Biológicos/metabolismo , Disulfuros/química , Glicopéptidos/aislamiento & purificación , Humanos , Ligandos , Microbiota , Organofosfonatos/aislamiento & purificación , Terpenos/aislamiento & purificación
13.
Proc Natl Acad Sci U S A ; 114(25): 6551-6556, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28584123

RESUMEN

Enzymes that can catalyze the macrocyclization of linear peptide substrates have long been sought for the production of libraries of structurally diverse scaffolds via combinatorial gene assembly as well as to afford rapid in vivo screening methods. Orbitides are plant ribosomally synthesized and posttranslationally modified peptides (RiPPs) of various sizes and topologies, several of which are shown to be biologically active. The diversity in size and sequence of orbitides suggests that the corresponding macrocyclases may be ideal catalysts for production of cyclic peptides. Here we present the biochemical characterization and crystal structures of the plant enzyme PCY1 involved in orbitide macrocyclization. These studies demonstrate how the PCY1 S9A protease fold has been adapted for transamidation, rather than hydrolysis, of acyl-enzyme intermediates to yield cyclic products. Notably, PCY1 uses an unusual strategy in which the cleaved C-terminal follower peptide from the substrate stabilizes the enzyme in a productive conformation to facilitate macrocyclization of the N-terminal fragment. The broad substrate tolerance of PCY1 can be exploited as a biotechnological tool to generate structurally diverse arrays of macrocycles, including those with nonproteinogenic elements.


Asunto(s)
Péptidos Cíclicos/genética , Proteínas de Plantas/genética , Plantas/genética , Biosíntesis de Proteínas/genética , Ribosomas/genética , Secuencia de Aminoácidos , Procesamiento Proteico-Postraduccional/genética
14.
Biochemistry ; 58(52): 5329-5338, 2019 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-31117392

RESUMEN

Enzymatic dehalogenation is an important and well-studied biological process in both the detoxification and catabolism of small molecules, many of which are anthropogenic in origin. However, dedicated dehalogenation reactions that replace a halogen atom with a hydrogen are rare in the biosynthesis of natural products. In fact, the debrominase Bmp8 is the only known example. It catalyzes the reductive debromination of the coral settlement cue and the potential human toxin 2,3,4,5-tetrabromopyrrole as part of the biosynthesis of the antibiotic pentabromopseudilin. Using a combination of protein crystallography, mutagenesis, and computational modeling, we propose a catalytic mechanism for Bmp8 that is reminiscent of that catalyzed by human deiodinases in the maintenance of thyroid hormones. The identification of the key catalytic residues enabled us to recognize divergent functional homologues of Bmp8. Characterization of one of these homologues demonstrated its debromination activity even though it is found in a completely distinct genomic context. This observation suggests that additional enzymes outside those associated with the tetrabromopyrrole biosynthetic pathway may be able to alter the lifetime of this compound in the environment.


Asunto(s)
Bacterias/enzimología , Halogenación , Yoduro Peroxidasa/metabolismo , Cristalografía por Rayos X , Humanos , Yoduro Peroxidasa/química , Modelos Moleculares , Oxidación-Reducción , Multimerización de Proteína , Estructura Cuaternaria de Proteína
15.
Chem Rev ; 117(8): 5457-5520, 2017 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-28135077

RESUMEN

Lanthipeptides are ribosomally synthesized and post-translationally modified peptides (RiPPs) that display a wide variety of biological activities, from antimicrobial to antiallodynic. Lanthipeptides that display antimicrobial activity are called lantibiotics. The post-translational modification reactions of lanthipeptides include dehydration of Ser and Thr residues to dehydroalanine and dehydrobutyrine, a transformation that is carried out in three unique ways in different classes of lanthipeptides. In a cyclization process, Cys residues then attack the dehydrated residues to generate the lanthionine and methyllanthionine thioether cross-linked amino acids from which lanthipeptides derive their name. The resulting polycyclic peptides have constrained conformations that confer their biological activities. After installation of the characteristic thioether cross-links, tailoring enzymes introduce additional post-translational modifications that are unique to each lanthipeptide and that fine-tune their activities and/or stability. This review focuses on studies published over the past decade that have provided much insight into the mechanisms of the enzymes that carry out the post-translational modifications.


Asunto(s)
Bacteriocinas/metabolismo , Enzimas/metabolismo , Péptidos/química , Procesamiento Proteico-Postraduccional
16.
Angew Chem Int Ed Engl ; 58(25): 8394-8399, 2019 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-30963655

RESUMEN

l-4-Chlorokynurenine (l-4-Cl-Kyn) is a neuropharmaceutical drug candidate that is in development for the treatment of major depressive disorder. Recently, this amino acid was naturally found as a residue in the lipopeptide antibiotic taromycin. Herein, we report the unprecedented conversion of l-tryptophan into l-4-Cl-Kyn catalyzed by four enzymes in the taromycin biosynthetic pathway from the marine bacterium Saccharomonospora sp. CNQ-490. We used genetic, biochemical, structural, and analytical techniques to establish l-4-Cl-Kyn biosynthesis, which is initiated by the flavin-dependent tryptophan chlorinase Tar14 and its flavin reductase partner Tar15. This work revealed the first tryptophan 2,3-dioxygenase (Tar13) and kynurenine formamidase (Tar16) enzymes that are selective for chlorinated substrates. The substrate scope of Tar13, Tar14, and Tar16 was examined and revealed intriguing promiscuity, thereby opening doors for the targeted engineering of these enzymes as useful biocatalysts.


Asunto(s)
Aminoácidos/metabolismo , Antibacterianos/metabolismo , Antidepresivos/metabolismo , Quinurenina/análogos & derivados , Lipopéptidos/metabolismo , Profármacos/metabolismo , Aminoácidos/química , Antibacterianos/química , Antidepresivos/química , Arilformamidasa/metabolismo , Cristalografía por Rayos X , Quinurenina/biosíntesis , Quinurenina/química , Lipopéptidos/química , Modelos Moleculares , Estructura Molecular , Profármacos/química , Triptófano Oxigenasa/metabolismo
17.
Angew Chem Int Ed Engl ; 58(25): 8454-8457, 2019 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-30995339

RESUMEN

Kainic acid, the flagship member of the kainoid family of natural neurochemicals, is a widely used neuropharmacological agent that helped unravel the key role of ionotropic glutamate receptors, including the kainate receptor, in the central nervous system. Worldwide shortages of this seaweed natural product in the year 2000 prompted numerous chemical syntheses, including scalable preparations with as few as six-steps. Herein we report the discovery and characterization of the concise two-enzyme biosynthetic pathway to kainic acid from l-glutamic acid and dimethylallyl pyrophosphate in red macroalgae and show that the biosynthetic genes are co-clustered in genomes of Digenea simplex and Palmaria palmata. Moreover, we applied a key biosynthetic α-ketoglutarate-dependent dioxygenase enzyme in a biotransformation methodology to efficiently construct kainic acid on the gram scale. This study establishes both the feasibility of mining seaweed genomes for their biotechnological prowess.


Asunto(s)
Ácido Kaínico/metabolismo , Rhodophyta/química , Ácido Kaínico/química , Estructura Molecular , Rhodophyta/metabolismo
18.
Proc Natl Acad Sci U S A ; 111(35): E3708-17, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25136124

RESUMEN

Enzymes that degrade dietary and host-derived glycans represent the most abundant functional activities encoded by genes unique to the human gut microbiome. However, the biochemical activities of a vast majority of the glycan-degrading enzymes are poorly understood. Here, we use transcriptome sequencing to understand the diversity of genes expressed by the human gut bacteria Bacteroides intestinalis and Bacteroides ovatus grown in monoculture with the abundant dietary polysaccharide xylan. The most highly induced carbohydrate active genes encode a unique glycoside hydrolase (GH) family 10 endoxylanase (BiXyn10A or BACINT_04215 and BACOVA_04390) that is highly conserved in the Bacteroidetes xylan utilization system. The BiXyn10A modular architecture consists of a GH10 catalytic module disrupted by a 250 amino acid sequence of unknown function. Biochemical analysis of BiXyn10A demonstrated that such insertion sequences encode a new family of carbohydrate-binding modules (CBMs) that binds to xylose-configured oligosaccharide/polysaccharide ligands, the substrate of the BiXyn10A enzymatic activity. The crystal structures of CBM1 from BiXyn10A (1.8 Å), a cocomplex of BiXyn10A CBM1 with xylohexaose (1.14 Å), and the CBM from its homolog in the Prevotella bryantii B14 Xyn10C (1.68 Å) reveal an unanticipated mode for ligand binding. A minimal enzyme mix, composed of the gene products of four of the most highly up-regulated genes during growth on wheat arabinoxylan, depolymerizes the polysaccharide into its component sugars. The combined biochemical and biophysical studies presented here provide a framework for understanding fiber metabolism by an important group within the commensal bacterial population known to influence human health.


Asunto(s)
Bacteroides/enzimología , Endo-1,4-beta Xilanasas/genética , Glicósido Hidrolasas/genética , Intestinos/microbiología , Polisacáridos/metabolismo , Simbiosis/fisiología , Bacteroides/genética , Endo-1,4-beta Xilanasas/metabolismo , Fermentación/fisiología , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Glucuronatos/metabolismo , Glicósido Hidrolasas/metabolismo , Humanos , Microbiota/fisiología , Mutagénesis Sitio-Dirigida , Oligosacáridos/metabolismo , Filogenia , Transcriptoma , Xilanos/metabolismo
19.
J Am Chem Soc ; 138(50): 16452-16458, 2016 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-27998080

RESUMEN

Lasso peptides are a class of bioactive ribosomally synthesized and post-translationally modified peptides (RiPPs), with a threaded knot structure that is formed by an isopeptide bond attaching the N-terminus of the peptide to a side chain carboxylate. Some lasso peptide biosynthetic clusters harbor an enzyme that specifically hydrolyzes the isopeptide bond to yield the linear peptide. We describe here the 2.4 Å resolution structure of a lasso peptide isopeptidase revealing a topologically novel didomain architecture consisting of an open ß-propeller appended to an α/ß hydrolase domain. The 2.2 Å resolution cocrystal structure of an inactive variant in complex with a lasso peptide reveals deformation of the substrate, and reorganization of the enzyme active site, which exposes and orients the isopeptide bond for hydrolysis. Structure-based mutational analysis reveals how this enzyme recognizes the lasso peptide substrate by shape complementarity rather than through sequence specificity. The isopeptidase gene can be used to facilitate genome mining, as a network-based mining strategy queried with this sequence identified 87 putative lasso peptide biosynthetic clusters, 65 of which have not been previously described. Lastly, we validate this mining approach by heterologous expression of two clusters encoded within the genome of Asticcaucalis benevestitus, and demonstrate that both clusters produce lasso peptides.


Asunto(s)
Liasas de Carbono-Nitrógeno/química , Liasas de Carbono-Nitrógeno/metabolismo , Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Dominios Proteicos
20.
Nat Chem Biol ; 10(10): 823-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25129028

RESUMEN

Despite intensive research, the cyclodehydratase responsible for azoline biogenesis in thiazole/oxazole-modified microcin (TOMM) natural products remains enigmatic. The collaboration of two proteins, C and D, is required for cyclodehydration. The C protein is homologous to E1 ubiquitin-activating enzymes, whereas the D protein is within the YcaO superfamily. Recent studies have demonstrated that TOMM YcaOs phosphorylate amide carbonyl oxygens to facilitate azoline formation. Here we report the X-ray crystal structure of an uncharacterized YcaO from Escherichia coli (Ec-YcaO). Ec-YcaO harbors an unprecedented fold and ATP-binding motif. This motif is conserved among TOMM YcaOs and is required for cyclodehydration. Furthermore, we demonstrate that the C protein regulates substrate binding and catalysis and that the proline-rich C terminus of the D protein is involved in C protein recognition and catalysis. This study identifies the YcaO active site and paves the way for the characterization of the numerous YcaO domains not associated with TOMM biosynthesis.


Asunto(s)
Adenosina Trifosfato/química , Bacteriocinas/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Hidroliasas/química , Fosfotransferasas/química , Enzimas Activadoras de Ubiquitina/química , Adenosina Trifosfato/metabolismo , Secuencias de Aminoácidos , Bacteriocinas/genética , Bacteriocinas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Escherichia coli/enzimología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hidroliasas/genética , Hidroliasas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Oxazoles/química , Oxazoles/metabolismo , Fosfotransferasas/genética , Fosfotransferasas/metabolismo , Unión Proteica , Biosíntesis de Proteínas , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Tiazoles/química , Tiazoles/metabolismo , Enzimas Activadoras de Ubiquitina/genética , Enzimas Activadoras de Ubiquitina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA