Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 143(7): 1161-73, 2010 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-21183078

RESUMEN

The systemic regulation of stem cells ensures that they meet the needs of the organism during growth and in response to injury. A key point of regulation is the decision between quiescence and proliferation. During development, Drosophila neural stem cells (neuroblasts) transit through a period of quiescence separating distinct embryonic and postembryonic phases of proliferation. It is known that neuroblasts exit quiescence via a hitherto unknown pathway in response to a nutrition-dependent signal from the fat body. We have identified a population of glial cells that produce insulin/IGF-like peptides in response to nutrition, and we show that the insulin/IGF receptor pathway is necessary for neuroblasts to exit quiescence. The forced expression of insulin/IGF-like peptides in glia, or activation of PI3K/Akt signaling in neuroblasts, can drive neuroblast growth and proliferation in the absence of dietary protein and thus uncouple neuroblasts from systemic control.


Asunto(s)
Drosophila/citología , Drosophila/metabolismo , Células-Madre Neurales/citología , Animales , Dieta , Drosophila/embriología , Cuerpo Adiposo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Neuroglía/citología , Somatomedinas/metabolismo
2.
Cell ; 133(5): 769-71, 2008 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-18510921

RESUMEN

During development, many neural stem cells "age" as they sequentially generate distinct neuronal or glial cell types. In this issue, Maurange et al. (2008) now identify the temporal control factors in Drosophila neural stem cells (neuroblasts) that regulate the fate of stem cell progeny and signal the end of stem cell proliferation.


Asunto(s)
Drosophila melanogaster/citología , Neuronas/citología , Células Madre/citología , Animales , Diferenciación Celular , Proliferación Celular , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Neuronas/metabolismo , Células Madre/metabolismo
3.
Cell Syst ; 15(8): 753-769.e5, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39116880

RESUMEN

This study introduces a new imaging, spatial transcriptomics (ST), and single-cell RNA-sequencing integration pipeline to characterize neoplastic cell state transitions during tumorigenesis. We applied a semi-supervised analysis pipeline to examine premalignant pancreatic intraepithelial neoplasias (PanINs) that can develop into pancreatic ductal adenocarcinoma (PDAC). Their strict diagnosis on formalin-fixed and paraffin-embedded (FFPE) samples limited the single-cell characterization of human PanINs within their microenvironment. We leverage whole transcriptome FFPE ST to enable the study of a rare cohort of matched low-grade (LG) and high-grade (HG) PanIN lesions to track progression and map cellular phenotypes relative to single-cell PDAC datasets. We demonstrate that cancer-associated fibroblasts (CAFs), including antigen-presenting CAFs, are located close to PanINs. We further observed a transition from CAF-related inflammatory signaling to cellular proliferation during PanIN progression. We validate these findings with single-cell high-dimensional imaging proteomics and transcriptomics technologies. Altogether, our semi-supervised learning framework for spatial multi-omics has broad applicability across cancer types to decipher the spatiotemporal dynamics of carcinogenesis.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinogénesis , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Carcinogénesis/genética , Fibroblastos Asociados al Cáncer/metabolismo , Carcinoma Ductal Pancreático/genética , Microambiente Tumoral/genética , Análisis de la Célula Individual/métodos , Transcriptoma/genética , Regulación Neoplásica de la Expresión Génica/genética , Carcinoma in Situ/genética , Carcinoma in Situ/patología
4.
Science ; 370(6512)2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-33004487

RESUMEN

Injuries to the central nervous system (CNS) are inefficiently repaired. Resident neural stem cells manifest a limited contribution to cell replacement. We have uncovered a latent potential in neural stem cells to replace large numbers of lost oligodendrocytes in the injured mouse spinal cord. Integrating multimodal single-cell analysis, we found that neural stem cells are in a permissive chromatin state that enables the unfolding of a normally latent gene expression program for oligodendrogenesis after injury. Ectopic expression of the transcription factor OLIG2 unveiled abundant stem cell-derived oligodendrogenesis, which followed the natural progression of oligodendrocyte differentiation, contributed to axon remyelination, and stimulated functional recovery of axon conduction. Recruitment of resident stem cells may thus serve as an alternative to cell transplantation after CNS injury.


Asunto(s)
Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Oligodendroglía/fisiología , Regeneración de la Medula Espinal/fisiología , Animales , Astrocitos/fisiología , Axones/fisiología , Linaje de la Célula , Epéndimo/citología , Epéndimo/metabolismo , Ratones , Ratones Endogámicos C57BL , Neurogénesis/genética , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Oligodendroglía/citología , Recuperación de la Función/genética , Recuperación de la Función/fisiología , Remielinización/genética , Remielinización/fisiología , Análisis de la Célula Individual , Traumatismos de la Médula Espinal/fisiopatología , Regeneración de la Medula Espinal/genética
5.
Cell Stem Cell ; 11(3): 282-4, 2012 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-22958925

RESUMEN

Recently in Nature, Song et al. (2012) show that the neurotransmitter GABA acts directly on radial glia-like neural stem cells to maintain quiescence and provide a mechanism for how neuronal activity controls the production of new neurons in the hippocampus.

6.
Philos Trans R Soc Lond B Biol Sci ; 363(1489): 39-56, 2008 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-17309865

RESUMEN

Drosophila neuroblasts are similar to mammalian neural stem cells in their ability to self-renew and to produce many different types of neurons and glial cells. In the past two decades, great advances have been made in understanding the molecular mechanisms underlying embryonic neuroblast formation, the establishment of cell polarity and the temporal regulation of cell fate. It is now a challenge to connect, at the molecular level, the different cell biological events underlying the transition from neural stem cell maintenance to differentiation. Progress has also been made in understanding the later stages of development, when neuroblasts become mitotically inactive, or quiescent, and are then reactivated postembryonically to generate the neurons that make up the adult nervous system. The ability to manipulate the steps leading from quiescence to proliferation and from proliferation to differentiation will have a major impact on the treatment of neurological injury and neurodegenerative disease.


Asunto(s)
Dípteros/citología , Dípteros/fisiología , Neuronas/fisiología , Células Madre/fisiología , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA