Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Environ Toxicol ; 39(4): 2466-2476, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38305644

RESUMEN

Polychlorinated biphenyls (PCBs) are typical persistent organic pollutants that have been associated with type 2 diabetes (T2DM) in cohort studies. This review aims to comprehensively assess the molecular mechanisms of PCBs-induced T2DM. Recent progress has been made in the research of PCBs in liver tissue, adipose tissue, and other tissues. By influencing the function of nuclear receptors, such as the aryl hydrocarbon receptor (AhR), pregnancy X receptor (PXR), and peroxisome proliferator activated receptor γ (PPARγ), as well as the inflammatory response, PCBs disrupt the balance of hepatic glucose and lipid metabolism. This is associated with insulin resistance (IR) in the target organ of insulin. Through androgen receptor (AR), estrogen receptor α/ß (ERα/ß), and pancreato-duodenal-homeobox gene-1 (PDX-1), PCBs affect the secretion of insulin and increase blood glucose. Thus, this review is a discussion on the relationship between PCBs exposure and the pathogenesis of T2DM. It is hoped to provide basic concepts for diabetes research and disease treatment.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Insulinas , Bifenilos Policlorados , Humanos , Bifenilos Policlorados/toxicidad , Diabetes Mellitus Tipo 2/inducido químicamente , Diabetes Mellitus Tipo 2/patología , Hígado/metabolismo , Receptores de Hidrocarburo de Aril
2.
Molecules ; 28(20)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37894615

RESUMEN

Gut microbiota dysbiosis has been reported as a risk factor in the development of type 2 diabetes mellitus (T2DM). Polysaccharides from Phellinus igniarius (P. igniarius) possess various properties that help manage metabolic diseases; however, their underlying mechanism of action remains unclear. Therefore, in this study, we aimed to evaluate the effect of P. igniarius polysaccharides (SH-P) on improving hyperglycemia in mice with T2DM and clarified its association with the modulation of gut microbiota and their metabolites using 16S rDNA sequencing and liquid chromatography-mass spectrometry. Fecal microbiota transplantation (FMT) was used to verify the therapeutic effects of microbial remodeling. SH-P supplementation alleviated hyperglycemia symptoms in T2DM mice, ameliorated gut dysbiosis, and significantly increased the abundance of Lactobacillus in the gut. Pathway enrichment analysis indicated that SH-P treatment altered metabolic pathways associated with the occurrence and development of diabetes. Spearman's correlation analysis revealed that changes in the dominant bacterial genera were significantly correlated with metabolite levels closely associated with hyperglycemia. Additionally, FMT significantly improved insulin sensitivity and antioxidative capacity and reduced inflammation and tissue injuries, indicating improved glucose homeostasis. These results indicate that the ameliorative effects of SH-P on hyperglycemia are associated with the modulation of gut microbiota composition and its metabolites.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Hiperglucemia , Ratones , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Disbiosis/tratamiento farmacológico , Disbiosis/microbiología , Hiperglucemia/tratamiento farmacológico , Polisacáridos/farmacología , Polisacáridos/uso terapéutico
3.
Molecules ; 24(1)2019 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-30609723

RESUMEN

Ultrasonic-microwave assisted extraction (UMAE) of Trametes orientalis polysaccharides was optimized by response surface methodology. Hepatoprotective effects of a purified T. orientalis polysaccharide (TOP-2) were evaluated by alcohol-induced liver injury model mice. The optimal UMAE parameters were indicated as below: ratio of water to raw material 28 mL/g, microwave power 114 W, extraction time 11 min. The polysaccharides yield was 7.52 ± 0.12%, which was well consistent with the predicted value of 7.54%. Pre-treatment with TOP-2 effectively increased the liver index and spleen index in alcohol-treated mice. The elevated serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels of mice after alcohol exposure were inhibited by TOP-2 administration. The liver tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß) levels have decreased significantly as a result of alcohol exposure, while pre-treatment with TOP-2 could mitigate these consequences. Furthermore, pre-treatment with TOP-2 could efficiently boost the superoxidase dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities, and observably constrain the malondialdehyde (MDA) level. The findings suggest that TOP-2 might be useful for alleviating the alcohol-induced hepatotoxicity via its antioxidant and anti-inflammatory potential.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Microondas , Polisacáridos/farmacología , Trametes/química , Ultrasonido/métodos , Alanina Transaminasa/sangre , Animales , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Aspartato Aminotransferasas/sangre , Descubrimiento de Drogas , Etanol/toxicidad , Interleucina-1beta/metabolismo , Hígado/efectos de los fármacos , Masculino , Malondialdehído/metabolismo , Ratones , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Polisacáridos/aislamiento & purificación , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
4.
Arch Microbiol ; 200(4): 541-552, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29214339

RESUMEN

The ascomycete fungus Beauveria bassiana is a natural pathogen of hundreds of insect species and is commercially produced as an environmentally friendly mycoinsecticide. Many genes involved in fungal insecticide infection have been identified but few have been further explored. In this study, we constructed three transcriptomes of B. bassiana at 24, 48 and 72 h post infection of insect pests (BbI) or control (BbC). There were 3148, 3613 and 4922 genes differentially expressed at 24, 48 and 72 h post BbI/BbC infection, respectively. A large number of genes and pathways involved in infection were identified. To further analyze those genes, expression patterns across different infection stages (0, 12, 24, 36, 48, 60, 72 and 84 h) were studied using quantitative RT-PCR. This analysis showed that the infection-related genes could be divided into four patterns: highly expressed throughout the whole infection process (thioredoxin 1); highly expressed during early stages of infection but lowly expressed after the insect death (adhesin protein Mad1); lowly expressed during early infection but highly expressed after insect death (cation transporter, OpS13); or lowly expressed across the entire infection process (catalase protein). The data provide novel insights into the insect-pathogen interaction and help to uncover the molecular mechanisms involved in fungal infection of insect pests.


Asunto(s)
Beauveria/genética , Genes Fúngicos , Mariposas Nocturnas/genética , Animales , Beauveria/metabolismo , Regulación Fúngica de la Expresión Génica , Ontología de Genes , Interacciones Huésped-Patógeno/genética , Evasión Inmune , Larva/genética , Larva/microbiología , Redes y Vías Metabólicas , Anotación de Secuencia Molecular , Mariposas Nocturnas/inmunología , Mariposas Nocturnas/microbiología , Control Biológico de Vectores , Esporas Fúngicas/genética , Transcriptoma
5.
Appl Microbiol Biotechnol ; 101(10): 4215-4226, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28238081

RESUMEN

DNA methylation is an important epigenetic mark in mammals, plants, and fungi and depends on multiple genetic pathways involving de novo and maintenance DNA methyltransferases (DNMTases). Metarhizium robertsii, a model system for investigating insect-fungus interactions, has been used as an environmentally friendly alternative to chemical insecticides. However, little is known concerning the molecular basis for DNA methylation. Here, we report on the roles of two DNMTases (MrRID and MrDIM-2) by characterizing ΔMrRID, ΔMrDIM-2, and ΔRID/ΔDIM-2 mutants. The results showed that approximately 71, 10, and 8% of mC sites remained in the ΔMrRID, ΔMrDIM-2, and ΔRID/ΔDIM-2 strains, respectively, compared with the wild-type (WT) strain. Further analysis showed that MrRID regulates the specificity of DNA methylation and MrDIM-2 is responsible for most DNA methylation, implying an interaction or cooperation between MrRID and MrDIM-2 for DNA methylation. Moreover, the ΔMrDIM-2 and ΔRID/ΔDIM-2 strains showed more defects in radial growth and conidial production compared to the WT. Under ultraviolet (UV) irradiation or heat stress, an obvious reduction in spore viability was observed for all the mutant strains compared to the WT. The spore median lethal times (LT50s) for the ΔMrDIM-2 and ΔRID/ΔDIM-2 strains in the greater wax moth, Galleria mellonella, were decreased by 47.7 and 65.9%, respectively, which showed that MrDIM-2 is required for full fungal virulence. Our data advances the understanding of the function of DNMTase in entomopathogenic fungi, which should contribute to future epigenetic investigations in fungi.


Asunto(s)
Metilación de ADN , Metilasas de Modificación del ADN/metabolismo , Regulación Fúngica de la Expresión Génica , Metarhizium/enzimología , Metarhizium/crecimiento & desarrollo , Animales , Metilasas de Modificación del ADN/genética , Respuesta al Choque Térmico/genética , Calor , Insectos/microbiología , Metarhizium/genética , Metarhizium/patogenicidad , Mariposas Nocturnas/microbiología , Fenotipo , Esporas Fúngicas , Estrés Fisiológico , Rayos Ultravioleta , Virulencia
6.
Zoolog Sci ; 31(10): 671-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25284386

RESUMEN

The Amur sleeper Perccottus glenii (Perciformes, Gobioidei, Odontobutidae) is well known as an invasive fish in the river basins of Eastern and Central Europe, but its genetic background is unavailable across its native habitats in northeast Asia. In this study, we used the mitochondrial cytochrome b gene by sampling 19 populations of P. glenii across its native distributional areas of Liaohe and Amur River basins to explore its evolutionary history. Phylogenetic analyses identified three major clades within P. glenii, among which Clade A and Clade B were co-distributed in the Liaohe and Amur River basins, and Clade C was restricted to the latter. Molecular dating showed that the splits of Clades A, B and C have happened in the late Early-early Middle Pleistocene and the most recent common ancestors of these clades have been presented in the late Middle-early Late Pleistocene. The P. glenii showed very high levels of genetic structure among populations (ΦST = 0.801), probably due to the characters of its life histories with very limited dispersal ability. The admixture of different clades in some populations of P. glenii probably reflects historical secondary contact. These findings indicate that Pleistocene climatic oscillation and river capture were major determinants for genetic variations and evolutionary history of the P. glenii.


Asunto(s)
Frío , Peces/genética , Peces/fisiología , Ríos , Distribución Animal , Animales , Asia/epidemiología , Peces/clasificación , Variación Genética , Filogenia , Filogeografía
7.
Front Nutr ; 10: 1203430, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37599693

RESUMEN

Introduction: The polysaccharides found in Cordyceps cicadae (C. cicadae) have received increasing academic attention owing to their wide variety of therapeutic activities. Methods: This study evaluated the hypoglycemic, antioxidant, and anti-inflammatory effects of polysaccharides from C. cicadae (CH-P). In addition, 16s rDNA sequencing and untargeted metabolomics analysis by liquid chromatography-mass spectrometry (LC-MS) were used to estimate the changes and regulatory relationships between gut microbiota and its metabolites. The fecal microbiota transplantation (FMT) was used to verify the therapeutic effects of microbial remodeling. Results: The results showed that CH-P treatment displayed hypoglycemic, antioxidant, and anti-inflammatory effects and alleviated tissue damage induced by diabetes. The CH-P treatment significantly reduced the Firmicutes/Bacteroidetes ratio and increased the abundance of Bacteroides, Odoribacter, Alloprevotella, Parabacteroides, Mucispirillum, and significantly decreased the abundance of Helicobacter and Lactobacillus compared to the diabetic group. The alterations in the metabolic pathways were mostly related to amino acid biosynthesis and metabolic pathways (particularly those involving tryptophan) according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Correlation analysis showed that Bacteroides, Odoribacter, Alloprevotella, Parabacteroides, and Mucispirillum were positively correlated with indole and its derivatives, such as 5-hydroxyindole-3-acetic acid. Indole intervention significantly improved hyperglycemic symptoms and insulin sensitivity, and increased the secretion of glucagon-like peptide-1 (GLP-1) in diabetic mice. FMT reduced blood glucose levels, improved glucose tolerance, and increased insulin sensitivity in diabetic mice. However, FMT did not significantly improve GLP-1 levels. Discussion: This indicates that C. cicadae polysaccharides alleviate hyperglycemia by regulating the production of metabolites other than indole and its derivatives by gut microbiota. This study provides an important reference for the development of novel natural products.

8.
Foods ; 11(4)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35205991

RESUMEN

This study investigated the purification, preliminary structure and in vivo immunomodulatory activities of polysaccharides from the spores of Cordyceps cicadae (CCSP). The crude CCSP was purified by diethylaminoethyl (DEAE)-cellulose and Sephadex G-100 chromatography, affording CCSP-1, CCSP-2 and CCSP-3 with molecular weights of 1.79 × 106, 5.74 × 104 and 7.93 × 103 Da, respectively. CCSP-2 consisted of mannose and glucose, while CCSP-1 and CCSP-3 are composed of three and four monosaccharides with different molar ratios, respectively. CCSP-2 exhibited its ameliorative effects in cyclophosphamide-induced immunosuppressed mice through significantly increasing spleen and thymus indices, enhancing macrophage phagocytic activity, stimulating splenocyte proliferation, improving natural killer (NK) cytotoxicity, improving bone marrow suppression, regulating the secretion of cytokines and immunoglobulins, and modulating antioxidant enzyme system. These results indicate that CCSP-2 might be exploited as a promising natural immunomodulator.

9.
Environ Pollut ; 263(Pt A): 114563, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32304952

RESUMEN

Previous in vitro studies have indicated that 2,3,3',4,4',5-hexachlorobiphenyl (PCB 156) may be a new contributor to metabolic disruption and may further cause the occurrence of nonalcoholic fatty liver disease (NAFLD). However, no study has clarified the specific contributions of PCB 156 to NAFLD progression by constructing an in vivo model. Herein, we evaluated the effects of PCB 156 treatment (55 mg/kg, i.p.) on the livers of C57BL/6 mice fed a control diet (CD) or a high-fat diet (HFD). The results showed that PCB 156 administration increased intra-abdominal fat mass, hepatic lipid levels and dyslipidemia in the CD-fed group and aggravated NAFLD in HFD-fed group. By using transcriptomics studies and biological methods, we found that the genes expression involved in lipid metabolism pathways, such as lipogenesis, lipid accumulation and lipid ß-oxidation, was greatly altered in liver tissues exposed to PCB 156. In addition, the cytochrome P450 pathway, peroxisome proliferator-activated receptors (PPARs) and the glutathione metabolism pathway were significantly activated following exposure to PCB 156. Furthermore, PCB 156 exposure increased serum transaminase levels and lipid peroxidation, and the redox-related genes were significantly dysregulated in liver tissue. In conclusion, our data suggested that PCB 156 could promote NAFLD development by altering the expression of genes related to lipid metabolism and inducing oxidative stress.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Bifenilos Policlorados , Animales , Dieta Alta en Grasa , Metabolismo de los Lípidos , Hígado , Ratones , Ratones Endogámicos C57BL
10.
Pest Manag Sci ; 75(5): 1443-1452, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30443979

RESUMEN

BACKGROUND: Insect pests have evolved various defense mechanisms to combat fungal infection, and fungi have developed multiple strategies to overcome the immune defense responses of insects. However, transcriptomic analysis of fungal strategies for infecting different pests has not been reported. RESULTS: Transcriptomic profiling of Beauveria bassiana was performed at 12, 24 and 48 h after infecting Galleria mellonella and Plutella xylostella, and 540, 847 and 932 differentially expressed genes were detected, respectively. Functional categorization showed that most of these genes are involved in the ribosome, nitrogen metabolism and oxidative phosphorylation pathways. Thirty-one differentially expressed virulence genes (including genes involved in adhesion, degradation, host colonization and killing, and secondary metabolism) were found, suggesting that different molecular mechanisms were used by the fungus during the infection of different pests, which was further confirmed by disrupting creA and fkh2. Virulence assay results showed that ΔcreA and Δfkh2 strains of B. bassiana had distinct fold changes in their 50% lethal time (LT50 ) values (compared with the control stains) during infection of G. mellonella (ΔcreA: 1.38-fold > Δfkh2: 1.18-fold) and P. xylostella (ΔcreA: 1.44-fold < Δfkh2: 2.25-fold). creA was expressed at higher levels during the infection of G. mellonella compared with P. xylostella, whereas fkh2 showed the opposite expression pattern, demonstrating that creA and Fkh2 have different roles in B. bassiana during the infection of G. mellonella and P. xylostella. CONCLUSION: These findings demonstrate that B. bassiana regulates different genes to infect different insects, advancing knowledge of the molecular mechanisms of Beauveria-pest interactions. © 2018 Society of Chemical Industry.


Asunto(s)
Beauveria/genética , Beauveria/fisiología , Perfilación de la Expresión Génica , Mariposas Nocturnas/microbiología , Animales , Beauveria/patogenicidad , Ontología de Genes , Análisis de Secuencia , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA