Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Surg Res ; 188(1): 162-73, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24582063

RESUMEN

Veins are exposed to the arterial environment during two common surgical procedures, creation of vein grafts and arteriovenous fistulae (AVF). In both cases, veins adapt to the arterial environment that is characterized by different hemodynamic conditions and increased oxygen tension compared with the venous environment. Successful venous adaptation to the arterial environment is critical for long-term success of the vein graft or AVF and, in both cases, is generally characterized by venous dilation and wall thickening. However, AVF are exposed to a high flow, high shear stress, low-pressure arterial environment and adapt mainly via outward dilation with less intimal thickening. Vein grafts are exposed to a moderate flow, moderate shear stress, high-pressure arterial environment and adapt mainly via increased wall thickening with less outward dilation. We review the data that describe these differences, as well as the underlying molecular mechanisms that mediate these processes. Despite extensive research, there are few differences in the molecular pathways that regulate cell proliferation and migration or matrix synthesis, secretion, or degradation currently identified between vein graft adaptation and AVF maturation that account for the different types of venous adaptation to arterial environments.


Asunto(s)
Adaptación Fisiológica , Derivación Arteriovenosa Quirúrgica , Venas/fisiología , Animales , Arterias/fisiología , Velocidad del Flujo Sanguíneo , Presión Sanguínea , Humanos , Venas/trasplante
2.
Elife ; 112022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35311644

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disease observed with aging that represents the most common form of dementia. To date, therapies targeting end-stage disease plaques, tangles, or inflammation have limited efficacy. Therefore, we set out to identify a potential earlier targetable phenotype. Utilizing a mouse model of AD and human fetal cells harboring mutant amyloid precursor protein, we show cell intrinsic neural precursor cell (NPC) dysfunction precedes widespread inflammation and amyloid plaque pathology, making it the earliest defect in the evolution of the disease. We demonstrate that reversing impaired NPC self-renewal via genetic reduction of USP16, a histone modifier and critical physiological antagonist of the Polycomb Repressor Complex 1, can prevent downstream cognitive defects and decrease astrogliosis in vivo. Reduction of USP16 led to decreased expression of senescence gene Cdkn2a and mitigated aberrant regulation of the Bone Morphogenetic Signaling (BMP) pathway, a previously unknown function of USP16. Thus, we reveal USP16 as a novel target in an AD model that can both ameliorate the NPC defect and rescue memory and learning through its regulation of both Cdkn2a and BMP signaling.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Envejecimiento/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Senescencia Celular , Modelos Animales de Enfermedad , Inflamación , Ratones , Ratones Transgénicos , Placa Amiloide , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo
3.
Cell Stem Cell ; 20(2): 247-260.e5, 2017 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-28041896

RESUMEN

Stem cells in many tissues sustain themselves by entering a quiescent state to avoid genomic insults and to prevent exhaustion caused by excessive proliferation. In the mammary gland, the identity and characteristics of quiescent epithelial stem cells are not clear. Here, we identify a quiescent mammary epithelial cell population expressing high levels of Bcl11b and located at the interface between luminal and basal cells. Bcl11bhigh cells are enriched for cells that can regenerate mammary glands in secondary transplants. Loss of Bcl11b leads to a Cdkn2a-dependent exhaustion of ductal epithelium and loss of epithelial cell regenerative capacity. Gain- and loss-of-function studies show that Bcl11b induces cells to enter the G0 phase of the cell cycle and become quiescent. Taken together, these results suggest that Bcl11b acts as a central intrinsic regulator of mammary epithelial stem cell quiescence and exhaustion and is necessary for long-term maintenance of the mammary gland.


Asunto(s)
Ciclo Celular , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/metabolismo , Proteínas Represoras/metabolismo , Células Madre/citología , Células Madre/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Antígenos CD/metabolismo , Linaje de la Célula , Proliferación Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Células Epiteliales/metabolismo , Femenino , Eliminación de Gen , Homeostasis , Glándulas Mamarias Animales/crecimiento & desarrollo , Ratones Endogámicos C57BL , Ratones Noqueados , Regeneración/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA