RESUMEN
The ability to create perovskite-based heterostructures with desirable charge transfer characteristics represents an important endeavor to render a set of perovskite materials and devices with tunable optoelectronic properties. However, due to similar material selection and band alignment in type-II and Z-scheme heterostructures, it remains challenging to obtain perovskite-based heterostructures with a favorable electron transfer pathway for photocatalysis. Herein, we report a robust tailoring of effective charge transfer pathway in perovskite-based heterostructures via a type-II to Z-scheme transformation for highly efficient and selective photocatalytic CO2 reduction. Specifically, CsPbBr3/TiO2 and CsPbBr3/Au/TiO2 heterostructures are synthesized and then investigated by ultrafast spectroscopy. Moreover, taking CsPbBr3/TiO2 and CsPbBr3/Au/TiO2 as examples, operando experiments and theoretical calculations confirm that the type-II heterostructure could be readily transformed into a Z-scheme heterostructure through establishing a low-resistance Ohmic contact, which indicates that a fast electron transfer pathway is crucial in Z-scheme construction, as further demonstrated by CsPbBr3/Ag/TiO2 and CsPbBr3/MoS2 heterostructures. In contrast to pristine CsPbBr3 and CsPbBr3/TiO2, the CsPbBr3/Au/TiO2 heterostructure exhibits 5.4- and 3.0-fold enhancement of electron consumption rate in photocatalytic CO2 reduction. DFT calculations and in situ diffuse reflectance infrared Fourier transform spectroscopy unveil that the superior CO selectivity is attributed to the lower energy of *CO desorption than that of hydrogenation to *HCO. This meticulous design sheds light on the modification of perovskite-based multifunctional materials and enlightens conscious optimization of semiconductor-based heterostructures with desirable charge transfer for catalysis and optoelectronic applications.
RESUMEN
Photoelectrochemical water splitting offers a promising approach for carbon neutrality, but its commercial prospects are still hampered by a lack of efficient and stable photoelectrodes with earth-abundant materials. Here, we report a strategy to construct an efficient photoanode with a coaxial nanobelt structure, comprising a buried-ZrS3/ZrOS n-p junction, for photoelectrochemical water splitting. The p-type ZrOS layer, formed on the surface of the n-type ZrS3 nanobelt through a pulsed-ozone-treatment method, acts as a hole collection layer for hole extraction and a protective layer to shield the photoanode from photocorrosion. The resulting ZrS3/ZrOS photoanode exhibits light harvesting with good photo-to-current efficiencies across the whole visible region to over 650 nm. By further employing NiOOH/FeOOH as the oxygen evolution reaction cocatalyst, the ZrS3/ZrOS/NiOOH/FeOOH photoanode yields a photocurrent density of ~9.3 mA cm-2 at 1.23 V versus the reversible hydrogen electrode with an applied bias photon-to-current efficiency of ~3.2% under simulated sunlight irradiation in an alkaline solution (pH = 13.6). The conformal ZrOS layer enables ZrS3/ZrOS/NiOOH/FeOOH photoanode operation over 1000 hours in an alkaline solution without obvious performance degradation. This study, offering a promising approach to fabricate efficient and durable photoelectrodes with earth-abundant materials, advances the frontiers of photoelectrochemical water splitting.
RESUMEN
An anion-rich electric double layer (EDL) region is favorable for fabricating an inorganic-rich solid-electrolyte interphase (SEI) towards stable lithium metal anode in ester electrolyte. Herein, cetyltrimethylammonium bromide (CTAB), a cationic surfactant, is adopted to draw more anions into EDL by ionic interactions that shield the repelling force on anions during lithium plating. In situ electrochemical surface-enhanced Raman spectroscopy results combined with molecular dynamics simulations validate the enrichment of NO3-/FSI- anions in the EDL region due to the positively charged CTA+. In-depth analysis of SEI structure by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry results confirmed the formation of the inorganic-rich SEI, which helps improve the kinetics of Li+ transfer, lower the charge transfer activation energy, and homogenize Li deposition. As a result, the Li||Li symmetric cell in the designed electrolyte displays a prolongated cycling time from 500 to 1300 h compared to that in the blank electrolyte at 0.5 mA cm-2 with a capacity of 1 mAh cm-2. Moreover, Li||LiFePO4 and Li||LiCoO2 with a high cathode mass loading of > 10 mg cm-2 can be stably cycled over 180 cycles.
RESUMEN
Exploring highly efficient single atom catalysts with defined active centers and tunable electronic structures is highly desirable. Herein, we developed an efficient hydrogen evolution reaction (HER) electrocatalyst through a self-gating phenomenon induced by Pt single atoms (SAs) supported on ultrathin NiO nanosheets (PtSA-NiO). The Ni atoms in NiO are partially replaced by the atomically dispersed Pt atoms, leading to a transition from p-type NiO into n-type PtSA-NiO. When the n-type PtSA-NiO serves as HER electrocatalyst, the self-gating phenomenon occurs in the ultrathin nanosheets, resulting in a mixture of leakage ("active") and metal-insulator-semiconductor ("inert") regions. The "inert" region induced by the ionic gating and reverse potential is capable of accumulating relatively high surface charge carrier concentration with an ultrahigh electric field, making the PtSA-NiO highly conductive; meanwhile, the HER process occurs at the Pt SAs sites (active region) in the PtSA-NiO nanosheets. As a result, the PtSA-NiO requires only 55 mV to deliver 10 mA/cm2 in an alkaline solution with good stability.