Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Phys Chem A ; 125(17): 3589-3599, 2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-33900754

RESUMEN

Molecular symmetry is vital to the selection rule of vibrationally resolved electronic transition, particularly when the nuclear dependence of electronic wave function is explicitly treated by including Franck-Condon (FC) factor, Franck-Condon/Herzberg-Teller (FC/HT) interference, and Herzberg-Teller (HT) coupling. Our present study investigated the light absorption spectra of highly symmetric tetracene, pentacene, and hexacene molecules of point-group D2h, as well as their monobrominated derivatives with a lower Cs symmetry. It was found that the symmetry-breaking monobromination allows more vibrational normal modes and their pairs to contribute to FC/HT interference and HT coupling, respectively. Through a projection of a molecule's vibrational normal modes to its irreducible representations, a linear relationship between the FC/HT intensity to the polyacene's size was deduced alongside a quadratic dependence of the HT intensity. Both theoretically derived correlations were well justified by our numerical simulations, which also demonstrated an approximately 20% improvement on the agreement with experimental line shape if the HT theory is adopted to replace the FC approximation. Moreover, for these low-symmetry monobrominated polyacenes, the FC intensity was even weaker than its FC/HT and HT counterparts at some excitation energies, making the HT theory imperative to decipher vibronic coupling, a fundamental driving force behind numerous chemical, biological, and photophysical processes.

2.
J Phys Chem A ; 124(44): 9156-9165, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33103890

RESUMEN

The line shape of an electronic spectrum conveys the coupling between electronic and vibrational degrees of freedom. In the present study, the light absorption spectra of single-crystalline pentacene were measured by polarized UV-vis microscopy at 77, 185, and 293 K. The vibronic coupling encoded in each spectrum was resolved by the Herzberg-Teller theory that considers the contributions from the Franck-Condon (FC) factor, Franck-Condo/Herzberg-Teller (FC/HT) interference, and Herzberg-Teller (HT) coupling. Specifically, excitation energies, electronic transition dipole moments, and their nuclear gradients were evaluated by the GW method to ensure numerical accuracy, while the computationally efficient density function theory was employed to determine the optimized structures and vibrational normal modes. For every pair of electronic transition and normal mode that gives rise to a strong vibronic transition intensity, we examined their spatial characteristics by projecting them onto the three crystal axes. It was found that all normal modes strongly coupled to the lowest-lying a-polarized electronic transitions oscillate along axis a, whereas none of their counterparts for the lowest-lying b-polarized electronic transitions is predominantly along axis b. This notable difference on the alignment between the electronic transition and molecular vibration could help the directional control of charge dissociation and/or spin separation. Moreover, a significant variance of the destructive FC/HT interference was discovered with increasing temperatures that can well explain the a-polarized fading tableland near 650 nm. Finally, the importance of HT coupling was corroborated by comparing its intensity with those of FC factor and FC/HT interference. Taken all together, the vibrational dependence of the electronic wave function is critical to resolve the light absorption spectra of single-crystalline pentacene and its temperature effects, facilitating the systematic design of functional optical materials based on pentacene and its derivatives.

3.
Proc Natl Acad Sci U S A ; 112(47): 14527-32, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26575621

RESUMEN

Heteroatom doping is an efficient way to modify the chemical and electronic properties of graphene. In particular, boron doping is expected to induce a p-type (boron)-conducting behavior to pristine (nondoped) graphene, which could lead to diverse applications. However, the experimental progress on atomic scale visualization and sensing properties of large-area boron-doped graphene (BG) sheets is still very scarce. This work describes the controlled growth of centimeter size, high-crystallinity BG sheets. Scanning tunneling microscopy and spectroscopy are used to visualize the atomic structure and the local density of states around boron dopants. It is confirmed that BG behaves as a p-type conductor and a unique croissant-like feature is frequently observed within the BG lattice, which is caused by the presence of boron-carbon trimers embedded within the hexagonal lattice. More interestingly, it is demonstrated for the first time that BG exhibits unique sensing capabilities when detecting toxic gases, such as NO2 and NH3, being able to detect extremely low concentrations (e.g., parts per trillion, parts per billion). This work envisions that other attractive applications could now be explored based on as-synthesized BG.

4.
Nano Lett ; 14(10): 5625-9, 2014 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-25171389

RESUMEN

Monolayer MoS2 is a direct-gap two-dimensional semiconductor that exhibits strong electron-hole interactions, leading to the formation of stable excitons and trions. Here we report the existence of efficient exciton-exciton annihilation, a four-body interaction, in this material. Exciton-exciton annihilation was identified experimentally in ultrafast transient absorption measurements through the emergence of a decay channel varying quadratically with exciton density. The rate of exciton-exciton annihilation was determined to be (4.3 ± 1.1) × 10(-2) cm(2)/s at room temperature.

5.
J Phys Chem Lett ; 12(12): 3142-3150, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33755478

RESUMEN

Vibronic coupling is believed to play an important role in siglet fission, wherein a photoexcited singlet exciton is converted into two triplet excitons. In the present study, we examine the role of vibronic coupling in singlet fission using polarized transient absorption microscopy and ab initio simulations on single-crystalline pentacene. It was found that singlet fission in pentacene is greatly facilitated by the vibrational coherence of a 35.0 cm-1 phonon, where anisotropic coherence persists extensively for a few picoseconds. This coherence-preserving phonon that drives the anisotropic singlet fission is made possible by a unique cross-axial charge-transfer intermediate state. In the same fashion, this phonon was also found to predominantly drive the quantum decohence of a correlated triplet pair to form a decoupled triplet dimer. Moreover, our transient kinetic experimental data illustrates notable directional anisotropicity of the singlet fission rate in single-crystalline pentacene.

6.
J Phys Chem Lett ; 11(4): 1261-1267, 2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-31971388

RESUMEN

Singlet fission is believed to improve the efficiency of solar energy conversion by breaking up the Shockley-Queisser thermodynamic limit. Understanding of triplet excitons generated by singlet fission is essential for solar energy exploitation. Here we employed transient absorption microscopy to examine dynamical behaviors of triplet excitons. We observed anisotropic recombination of triplet excitons in hexacene single crystals. The triplet exciton relaxations from singlet fission proceed in both geminate and non-geminate recombination. For the geminate recombination, the different rates were attributed to the significant difference in their related energy change based on the Redfield quantum dissipation theory. The process is mainly governed by the electron-phonon interaction in hexacene. On the other hand, the non-geminate recombination is of bimolecular origin through energy transfer. In the triplet-triplet bimolecular process, the rates along the two different optical axes in the a-b crystalline plane differ by a factor of 4. This anisotropy in the triplet-triplet recombination rates was attributed to the interference in the coupling probability of dipole-dipole interactions in the different geometric configurations of hexacene single crystals. Our experimental findings provide new insight into future design of singlet fission materials with desirable triplet exciton exploitations.

7.
ACS Appl Mater Interfaces ; 12(26): 29357-29364, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32501672

RESUMEN

The development of active, durable, and nonprecious electrocatalysts for hydrogen electrochemistry is highly desirable but challenging. In this work, we design and fabricate a novel interface catalyst of Ni and Co2N (Ni/Co2N) for hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR). The Ni/Co2N interfacial catalysts not only achieve a current density of -10.0 mA cm-2 with an overpotential of 16.2 mV for HER but also provide a HOR current density of 2.35 mA cm-2 at 0.1 V vs reversible hydrogen electrode (RHE). Furthermore, the electrode couple made of the Ni/Co2N interfacial catalysts requires only a cell voltage of 1.57 V to gain a current density of 10 mA cm-2 for overall water splitting. Hybridizations in the three elements of Ni-3d, N-2p, and Co-3d result in charge transfer in the interfacial junction of the Ni and Co2N materials. Our density functional theory calculations show that both the interfacial N and Co sites of Ni/Co2N prefer to hydrogen adsorption in the hydrogen catalytic activities. This study provides a new approach for the construction of multifunctional catalysts for hydrogen electrochemistry.

8.
ACS Nano ; 14(6): 6570-6581, 2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32338865

RESUMEN

The role of additives in facilitating the growth of conventional semiconducting thin films is well-established. Apparently, their presence is also decisive in the growth of two-dimensional transition metal dichalcogenides (TMDs), yet their role remains ambiguous. In this work, we show that the use of sodium bromide enables synthesis of TMD monolayers via a surfactant-mediated growth mechanism, without introducing liquefaction of metal oxide precursors. We discovered that sodium ions provided by sodium bromide chemically passivate edges of growing molybdenum disulfide crystals, relaxing in-plane strains to suppress 3D islanding and promote monolayer growth. To exploit this growth model, molybdenum disulfide monolayers were directly grown into desired patterns using predeposited sodium bromide as a removable template. The surfactant-mediated growth not only extends the families of metal oxide precursors but also offers a way for lithography-free patterning of TMD monolayers on various surfaces to facilitate fabrication of atomically thin electronic devices.

9.
iScience ; 19: 1079-1089, 2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31522118

RESUMEN

Singlet fission is known to improve solar energy utilization by circumventing the Shockley-Queisser limit. The two essential steps of singlet fission are the formation of a correlated triplet pair and its subsequent quantum decoherence. However, the mechanisms of the triplet pair formation and decoherence still remain elusive. Here we examined both essential steps in single crystalline hexacene and discovered remarkable anisotropy of the overall singlet fission rate along different crystal axes. Since the triplet pair formation emerges on the same timescale along both crystal axes, the quantum decoherence is likely responsible for the directional anisotropy. The distinct quantum decoherence rates are ascribed to the notable difference on their associated energy loss according to the Redfield quantum dissipation theory. Our hybrid experimental/theoretical framework will not only further our understanding of singlet fission, but also shed light on the systematic design of new materials for the third-generation solar cells.

10.
ACS Nano ; 11(10): 9941-9949, 2017 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-28953362

RESUMEN

Elucidating the origin of carbon nanotube chirality is key for realizing their untapped potential. Currently, prevalent theories suggest that catalyst structure originates chirality via an epitaxial relationship. Here we studied chirality abundances of carbon nanotubes grown on floating liquid Ga droplets, which excludes the influence of catalyst features, and compared them with abundances grown on solid Ru nanoparticles. Results of growth on liquid droplets bolsters the intrinsic preference of carbon nuclei toward certain chiralities. Specifically, the abundance of the (11,1)/χ = 4.31° tube can reach up to 95% relative to (9,4)/χ = 17.48°, although they have exactly the same diameter, (9.156 Å). However, the comparative abundances for the pair, (19,3)/χ = 7.2° and (17,6)/χ = 14.5°, with bigger diameter, (16.405 Å), fluctuate depending on synthesis temperature. The abundances of the same pairs of tubes grown on floating solid polyhedral Ru nanoparticles show completely different trends. Analysis of abundances in relation to nucleation probability, represented by a product of the Zeldovich factor and the deviation interval of a growing nuclei from equilibrium critical size, explain the findings. We suggest that the chirality in the nanotube in general is a result of interplay between intrinsic preference of carbon cluster and induction by catalyst structure. This finding can help to build the comprehensive theory of nanotube growth and offers a prospect for chirality-preferential synthesis of carbon nanotubes by the exploitation of liquid catalyst droplets.

11.
Nat Chem ; 9(4): 341-346, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28338681

RESUMEN

The absorption of a photon usually creates a singlet exciton (S1) in molecular systems, but in some cases S1 may split into two triplets (2×T1) in a process called singlet fission. Singlet fission is believed to proceed through the correlated triplet-pair 1(TT) state. Here, we probe the 1(TT) state in crystalline hexacene using time-resolved photoemission and transient absorption spectroscopies. We find a distinctive 1(TT) state, which decays to 2×T1 with a time constant of 270 fs. However, the decay of S1 and the formation of 1(TT) occur on different timescales of 180 fs and <50 fs, respectively. Theoretical analysis suggests that, in addition to an incoherent S1→1(TT) rate process responsible for the 180 fs timescale, S1 may couple coherently to a vibronically excited 1(TT) on ultrafast timescales (<50 fs). The coexistence of coherent and incoherent singlet fission may also reconcile different experimental observations in other acenes.

12.
Sci Rep ; 3: 1891, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23712556

RESUMEN

Growth of vertically aligned carbon nanotube (CNT) forests is highly sensitive to the nature of the substrate. This constraint narrows the range of available materials to just a few oxide-based dielectrics and presents a major obstacle for applications. Using a suspended monolayer, we show here that graphene is an excellent conductive substrate for CNT forest growth. Furthermore, graphene is shown to intermediate growth on key substrates, such as Cu, Pt, and diamond, which had not previously been compatible with nanotube forest growth. We find that growth depends on the degree of crystallinity of graphene and is best on mono- or few-layer graphene. The synergistic effects of graphene are revealed by its endurance after CNT growth and low contact resistances between the nanotubes and Cu. Our results establish graphene as a unique interface that extends the class of substrate materials for CNT growth and opens up important new prospects for applications.


Asunto(s)
Cobre/química , Grafito/química , Nanotubos de Carbono , Níquel/química , Óxidos/química , Catálisis , Electroquímica , Ensayo de Materiales , Propiedades de Superficie
13.
Sci Rep ; 2: 343, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22461974

RESUMEN

The advance of nanomaterials has opened new opportunities to develop ever more sensitive sensors owing to their high surface-to-volume ratio. However, it is challenging to achieve intrinsic sensitivities of nanomaterials for ultra-low level detections due to their vulnerability against contaminations. Here we show that despite considerable achievements in the last decade, continuous in situ cleaning of carbon nanotubes with ultraviolet light during gas sensing can still dramatically enhance their performance. For instance in nitric oxide detection, while sensitivity in air is improved two orders of magnitude, under controlled environment it reaches a detection limit of 590 parts-per-quadrillion (ppq) at room temperature. Furthermore, aiming for practical applications we illustrate how to address gas selectivity by introducing a gate bias. The concept of continuous in situ cleaning not only reveals the tremendous sensing potential of pristine carbon nanotubes but also more importantly it can be applied to other nanostructures.

14.
ACS Nano ; 5(12): 9619-27, 2011 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-22092098

RESUMEN

Formation of ripples on a supported graphene sheet involves interfacial interaction with the substrate. In this work, graphene was grown on a copper foil by chemical vapor deposition from methane. On thermal quenching from elevated temperatures, we observed the formation of ripples in grown graphene, developing a peculiar topographic pattern in the form of wavy grooves and single/double rolls, roughly honeycomb cells, or their combinations. Studies on pure copper foil under corresponding conditions but without the presence of hydrocarbon revealed the appearance of peculiar patterns on the foil surface, such as dendritic structures that are distinctive not of equilibrium solidified phases but arise from planar and/or convective instabilities driven by solutal and thermal capillary forces. We propose a new origin for the formation of ripples in the course of graphene growth at elevated temperatures, where the topographic pattern formation is governed by dynamic instabilities on the interface of a carbon-catalyst binary system. These non-equilibrium processes can be described based on Mullins-Sekerka and Benard-Marangoni instabilities in diluted binary alloys, which offer control over the ripple texturing through synthesis parameters such as temperature, imposed temperature gradient, quenching rate, diffusion coefficients of carbon in the metal catalyst, and the miscibility gap of the metal catalyst-carbon system.


Asunto(s)
Cobre/química , Grafito/química , Modelos Químicos , Nanoestructuras/química , Nanoestructuras/ultraestructura , Simulación por Computador , Ensayo de Materiales , Tamaño de la Partícula , Propiedades de Superficie
15.
ACS Nano ; 3(2): 379-85, 2009 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-19236075

RESUMEN

Carbon filaments can be grown using hydrocarbons with either exothermic or endothermic catalytic decomposition enthalpies. By in situ monitoring the evolution of the reaction enthalpy during nanotube synthesis via methane gas, we found that although the decomposition reaction of methane is endothermic an exothermic process is superimposed which accompanies the nanotube growth. Analysis shows that the main contributor in this liberated heat is the radiative heat transfer from the surroundings, along with dehydrogenation reaction of in situ formed secondary hydrocarbons on the catalyst surface and the carbon hydrogenation/oxidation processes. This finding implies that nanotube growth process enthalpy is exothermic, and particularly, it extends the commonly accepted temperature gradient driven growth mechanism to the growth via hydrocarbons with endothermic decomposition enthalpy.

16.
Science ; 326(5949): 116-20, 2009 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-19797656

RESUMEN

Single-walled carbon nanotubes can be classified as either metallic or semiconducting, depending on their conductivity, which is determined by their chirality. Existing synthesis methods cannot controllably grow nanotubes with a specific type of conductivity. By varying the noble gas ambient during thermal annealing of the catalyst, and in combination with oxidative and reductive species, we altered the fraction of tubes with metallic conductivity from one-third of the population to a maximum of 91%. In situ transmission electron microscopy studies reveal that this variation leads to differences in both morphology and coarsening behavior of the nanoparticles that we used to nucleate nanotubes. These catalyst rearrangements demonstrate that there are correlations between catalyst morphology and resulting nanotube electronic structure and indicate that chiral-selective growth may be possible.

17.
J Am Chem Soc ; 127(44): 15437-45, 2005 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-16262407

RESUMEN

IR and Raman spectroscopy has been used to study the evolution of the vibrational spectrum of bundled single-walled carbon nanotubes (SWNTs) during the purification process needed to remove metal catalyst and amorphous carbon present in arc-derived SWNT soot. We have carried out a systematic study to define the different outcomes stemming from the purification protocol (e.g., DO, DO/HCl, DO/HNO(3), H(2)O(2), H(2)O(2)/HCl), where dry oxidation (DO) or refluxing in H(2)O(2) was used in a first purification step to remove amorphous carbon. The second step involves acid reflux (HCl or HNO(3)) to remove the residual growth catalyst (Ni-Y). During strong chemical processing, it appears possible to create additional defects where carbon atoms are eliminated, the ring structure is now open, localized C=C bonds are created, and O-containing groups can be added to this defect to stabilize the structure. Evolution of SWNT skeletal disorder obtained via chemical processing was studied by Raman scattering. Higher intensity ratios of R- and G-band (I(R)/I(G)) are more typically found in SWNT materials with low D-band intensity and narrow G-band components. Using IR transmission through thin films of nanotubes, we can resolve the structure due to functional groups that were present in the starting material or added through chemical processing. After high-temperature vacuum annealing of the purified material at 1100 degrees C, IR spectroscopy shows that most of the added functional groups can be removed and that the structure that remains is assigned to the one- and two-phonon modes of SWNTs.

18.
Phys Rev Lett ; 90(25 Pt 1): 257403, 2003 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-12857164

RESUMEN

A double-walled carbon nanotube is used to study the radial charge distribution on the positive inner electrode of a cylindrical molecular capacitor. The outer electrode is a shell of bromine anions. Resonant Raman scattering from phonons on each carbon shell reveals the radial charge distribution. A self-consistent tight-binding model confirms the observed molecular Faraday cage effect, i.e., most of the charge resides on the outer wall, even when this wall was originally semiconducting and the inner wall was metallic.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA