Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biochem Mol Toxicol ; 38(4): e23698, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38501767

RESUMEN

Accumulating evidence confirms that sleep insufficiency is a high risk factor for cognitive impairment, which involves inflammation and synaptic dysfunction. Resveratrol, an agonist of the Sirt1, has demonstrated anti-inflammation and neuroprotective effects in models of Alzheimer's disease, Parkinson's disease, and schizophrenia. However, the beneficial effects of resveratrol on sleep deprivation-induced cognitive deficits and its underlying molecular mechanisms are unclear. In the present study, thirty-two male C57BL/6 J mice were randomly divided into a Control+DMSO group, Control+Resveratrol group, SD+DMSO group, and SD+Resveratrol group. The mice in the SD+Resveratrol group underwent 5 days of sleep deprivation after pretreatment with resveratrol (50 mg/kg) for 2 weeks, while the mice in the SD+DMSO group only underwent sleep deprivation. After sleep deprivation, we evaluated spatial learning and memory function using the Morris water maze test. We used general molecular biology techniques to detect changes in levels of pro-inflammatory cytokines and Sirt1/miR-134 pathway-related synaptic plasticity proteins. We found that resveratrol significantly reversed sleep deprivation-induced learning and memory impairment, elevated interleukin-1ß, interleukin-6, and tumor necrosis factor-α levels, and decreased brain-derived neurotrophic factor, tyrosine kinase receptor B, postsynaptic density protein-95, and synaptophysin levels by activating the Sirt1/miR-134 pathway. In conclusion, resveratrol is a promising agent for preventing sleep deprivation-induced cognitive dysfunction by reducing pro-inflammatory cytokines and improving synaptic function via the Sirt1/miR-134 pathway.


Asunto(s)
Disfunción Cognitiva , MicroARNs , Masculino , Ratones , Animales , Resveratrol/farmacología , Privación de Sueño/complicaciones , Privación de Sueño/metabolismo , Sirtuina 1/metabolismo , Dimetilsulfóxido/metabolismo , Dimetilsulfóxido/farmacología , Ratones Endogámicos C57BL , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Disfunción Cognitiva/prevención & control , Hipocampo/metabolismo , MicroARNs/metabolismo , Citocinas/metabolismo , Cognición
2.
Acta Pharmacol Sin ; 45(9): 1777-1792, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38671193

RESUMEN

Despite the widespread prevalence and important medical impact of insomnia, effective agents with few side effects are lacking in clinics. This is most likely due to relatively poor understanding of the etiology and pathophysiology of insomnia, and the lack of appropriate animal models for screening new compounds. As the main homeostatic, circadian, and neurochemical modulations of sleep remain essentially similar between humans and rodents, rodent models are often used to elucidate the mechanisms of insomnia and to develop novel therapeutic targets. In this article, we focus on several rodent models of insomnia induced by stress, diseases, drugs, disruption of the circadian clock, and other means such as genetic manipulation of specific neuronal activity, respectively, which could be used to screen for novel hypnotics. Moreover, important advantages and constraints of some animal models are discussed. Finally, this review highlights that the rodent models of insomnia may play a crucial role in novel drug development to optimize the management of insomnia.


Asunto(s)
Modelos Animales de Enfermedad , Descubrimiento de Drogas , Trastornos del Inicio y del Mantenimiento del Sueño , Animales , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Humanos , Hipnóticos y Sedantes/uso terapéutico , Hipnóticos y Sedantes/farmacología , Roedores
3.
BMC Neurosci ; 24(1): 26, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37055728

RESUMEN

BACKGROUND: It has been reported that age-associated cognitive decline (AACD) accelerated by maternal lipopolysaccharide (LPS) insult during late pregnancy can be transmitted to the second generation in a sex-specificity manner. In turn, recent studies indicated that glial cell line-derived neurotrophic factor (GDNF) and its cognate receptor (GFRα1) are critical for normal cognitive function. Based on this evidence, we aimed to explore whether Gdnf-GFRα1 expression contributes to cognitive decline in the F1 and F2 generations of mouse dams exposed to lipopolysaccharide (LPS) during late gestation, and to evaluate also the potential interference effect of pro-inflammatory cytokines. METHODS: During gestational days 15-17, pregnant CD-1 mice (8-10 weeks old) received a daily intraperitoneal injection of LPS (50 µg/kg) or saline (control). In utero LPS-exposed F1 generation mice were selectively mated to produce F2 generation mice. In F1 and F2 mice aged 3 and 15 months, the Morris water maze (MWM) was used to evaluated the spatial learning and memory ability, the western blotting and RT-PCR were used for analyses of hippocampal Gdnf and GFRα1 expression, and ELISA was used to analyse IL-1ß, IL-6 and TNF-α levels in serum. RESULTS: Middle-aged F1 offspring from LPS-treated mothers exhibited longer swimming latency and distance during the learning phase, lower percentage swimming time and distance in targe quadrant during memory phase, and lower hippocampal levels of Gdnf and GFRα1 gene products compared to age-matched controls. Similarly, the middle-aged F2 offspring from the Parents-LPS group had longer swimming latency and distance in the learning phase, and lower percentage swimming time and distance in memory phase than the F2-CON group. Moreover, the 3-month-old Parents-LPS and 15-month-old Parents- and Father-LPS groups had lower GDNF and GFRα1 protein and mRNAs levels compared to the age-matched F2-CON group. Furthermore, hippocampal levels of Gdnf and GFRα1 were correlated with impaired cognitive performance in the Morris water maze after controlling for circulating pro-inflammatory cytokine levels. CONCLUSIONS: Our findings indicate that accelerated AACD by maternal LPS exposure can be transmitted across at least two generations through declined Gdnf and GFRα1 expression, mainly via paternal linage.


Asunto(s)
Disfunción Cognitiva , Factor Neurotrófico Derivado de la Línea Celular Glial , Femenino , Ratones , Embarazo , Animales , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Lipopolisacáridos/farmacología , Hipocampo/metabolismo , Citocinas/metabolismo , Inflamación
4.
BMC Psychiatry ; 22(1): 449, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35790932

RESUMEN

BACKGROUND: The objective of this study was to explore the stigma and related influencing factors in individuals with chronic insomnia disorder (CID). METHODS: A total of 70 CID patients and 70 healthy controls (CON) were enrolled in the study. All subjects completed the assessments of sleep, emotion, and cognition. Their stigma and life quality were measured using the Chronic Stigma Scale and the 36-Item Short-Form Health Survey (SF-36). RESULTS: The ratio of individuals with stigma was significantly different between CID and CON groups (C2 = 35.6, p < 0.001). Compared with the CON group, the CID group had higher scores for total stigma (U = 662.0, p < 0.001), internalized stigma (U = 593.0, p < 0.001), enacted stigma (U = 1568.0, p < 0.001), PSQI (U = 2485.0, p < 0.001) and HAMD-17 (U = 69.5, p < 0.001) as well as lower scores for MoCA-C (U = 3997.5, p < 0.001) and most items of SF-36. Partial correlation analysis showed that different items of the Chronic Stigma Scale were positively correlated with illness duration, PSQI and HAMD-17 scores, while negatively correlated with one or more items of the SF-36. Multivariate regression analysis showed that illness duration and the Mental Health domain of the SF-36 were independent risk factors for one or more items of stigma in CID patients. CONCLUSION: Patients with CID have an increased risk of stigma. Moreover, illness duration and Mental Health may be primary factors related to stigma.


Asunto(s)
Trastornos del Inicio y del Mantenimiento del Sueño , Emociones , Humanos , Calidad de Vida/psicología , Estigma Social , Encuestas y Cuestionarios
5.
Neural Plast ; 2022: 1483101, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35574247

RESUMEN

A mounting body of evidence suggests that prenatal inflammation may enhance the rate of age-associated cognitive decline and may involve aberrant amounts of synaptic proteins in the hippocampus, including synaptotagmin-1 (Syt1) and activity-regulated cytoskeleton-associated protein (Arc). However, little is known about the specific impact of adolescent environmental enrichment (EE) on age-associated cognitive decline and the changes in synaptic proteins caused by prenatal inflammation. In this study, CD-1 mice in late pregnancy were given intraperitoneal doses of lipopolysaccharide (LPS, 50 µg/kg) or normal saline. Offspring arising from LPS dams were divided into a LPS group and a LPS plus EE (LPS-E) group. The LPS-E mice were exposed to EE from 2 months of age until the end of the experiment (3 or 15 months old). The Morris water maze (MWM) was used to assess the spatial learning and memory capacities of experimental mice, while western blotting and RNA-scope were used to determine the expression levels of Arc and Syt1 in the hippocampus at the protein and mRNA levels, respectively. Analysis revealed that at 15 months of age, the control mice experienced a reduction in cognitive ability and elevated expression levels of Arc and Syt1 genes when compared to control mice at 3 months of age. The LPS-E group exhibited better cognition and lower protein and mRNA levels of Arc and Syt1 than mice in the LPS group of the same age. However, the enriched environment mitigated but did not counteract, the effects of prenatal inflammation on cognitive and synaptic proteins when tested at either 3 or 15 months of age. Our findings revealed that long-term environmental enrichment improved the expression levels of synaptic proteins in CD-1 mice and that this effect was linked to the dysfunctional cognition caused by prenatal inflammation; this process may also be involved in the reduction of hippocampal Arc and Syt1 gene expression.


Asunto(s)
Lipopolisacáridos , Aprendizaje Espacial , Animales , Cognición , Femenino , Hipocampo/metabolismo , Inflamación/metabolismo , Lipopolisacáridos/toxicidad , Aprendizaje por Laberinto , Ratones , Embarazo , ARN Mensajero/metabolismo
6.
Eur Neurol ; 84(4): 254-264, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33975317

RESUMEN

BACKGROUND: Fibromyalgia (FM) is a chronic widespread pain disorder associated with fatigue, tender points, sleep disturbances, and mood disorders. Symptoms associated with FM also include decreased cognitive function in which the neural basis is poorly understood. Neuroendocrine hormones may be correlated with cognitive performance under some ill conditions. However, we are unaware of current evidence on neuroendocrine hormones as factors influencing cognitive function in adults with FM. OBJECTIVES: The aim of the study was to assess whether neuroendocrine hormones could affect cognition in the patients with FM. STUDY DESIGN: This study used a case-control trial design. SETTING: Study patients were recruited from the neurological outpatient clinics in the Second Affiliated Hospital and Affiliated Chaohu Hospital of Anhui Medical University and met the American College of Rheumatology criteria for FM. METHODS: Forty-six patients with FM were compared with twenty-nine healthy controls (HCs). Several measures of cognitive performance and serum levels of neuroendocrine hormones were used to make these comparisons, and the patients were also asked to complete questionnaires on depression and sleep quality. Partial correlation analysis was performed to control the confounders and linear regression analysis was used to examine the effects of neuroendocrine hormones on cognitive measures. RESULTS: The FM patients had worse performance in attention, short-term memory, orientation, object working memory and spatial reference memory, higher depression scores, and worse sleep quality than HCs. The raised level of cortisol and gonadotropin-releasing hormone (GnRH) can protect general cognition, whereas the raised level of cortisol and thyroid-stimulating hormone (TSH) will damage spatial memory. LIMITATIONS: We did not study the sex hormones comprehensively. CONCLUSIONS: The FM patients showed significant cognitive impairment in several domains. The altered levels of cortisol, thyrotrophin-releasing hormone (TRH), and GnRH may mediate cognitive changes in FM.


Asunto(s)
Disfunción Cognitiva , Fibromialgia , Adulto , Estudios de Casos y Controles , Cognición , Depresión , Fatiga , Humanos
7.
Pain Pract ; 18(1): 8-17, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28339138

RESUMEN

Tension-type headache (TTH) is the most prevalent primary headache. Chronic TTH (CTTH), the most serious form of TTH, is refractory, with a high socio-economic burden. Research studies have shown patients with migraine often had cognitive impairment, but few studies have focused on the cognition in patients with CTTH. In this study, we assumed that patients with CTTH also have cognitive impairments, which are modulated by the neuroendocrine state. Participants were recruited, including patients with CTTH and healthy controls. Cognitive ability was evaluated using the Montreal Cognitive Assessment and the Nine Box Maze Test. The administration of neuroendocrine hormones has been established to be associated with cognitive performance, and we detected the hormonal changes in the hypothalamus-pituitary-adrenal axis, the hypothalamus-pituitary-thyroid axis, and gonadotropin-releasing hormone. These results showed that compared to the controls, significant cognitive impairment and neuroendocrine dysfunction were present in the patients with CTTH. We also assessed the correlations between the neuroendocrine hormones and Pittsburgh Sleep Quality Index score, 17-term Hamilton's Depression Scale score, pain intensity, and duration of pain to determine whether the neuroendocrine hormones had any associations with these symptoms of CTTH. These results showed that changes in neuroendocrine hormones were involved in these symptoms of CTTH. Intervention with the neuroendocrine state may be a strategy for CTTH treatment.


Asunto(s)
Cognición , Disfunción Cognitiva/psicología , Cefalea de Tipo Tensional/psicología , Hormona Adrenocorticotrópica/metabolismo , Adulto , Estudios de Casos y Controles , Enfermedad Crónica , Disfunción Cognitiva/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Estudios Transversales , Depresión/psicología , Femenino , Hormona Liberadora de Gonadotropina/metabolismo , Humanos , Hidrocortisona/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Masculino , Persona de Mediana Edad , Dimensión del Dolor , Sistema Hipófiso-Suprarrenal/metabolismo , Escalas de Valoración Psiquiátrica , Sueño , Cefalea de Tipo Tensional/metabolismo , Glándula Tiroides/metabolismo , Tirotropina/metabolismo , Hormona Liberadora de Tirotropina/metabolismo , Tiroxina/metabolismo , Triyodotironina/metabolismo , Adulto Joven
8.
Ther Drug Monit ; 36(5): 612-7, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24577123

RESUMEN

BACKGROUND: To evaluate the influence of the single nucleotide polymorphism (SNP) rs 6265 in the brain-derived neurotrophic factor (BDNF) gene and 21 SNPs of the glial cell line-derived neurotrophic factor (GDNF) gene on the efficacy of paroxetine in patients with major depressive disorder (MDD). METHODS: Genotyping for BDNF and GDNF polymorphisms was performed in 298 patients with MDD who started 20 mg paroxetine per day and had their plasma concentrations measured after 6 weeks. The SNPs were selected from the HapMap Chinese ethnic group and literature reports. Changes in the severity of MDD were assessed with the Hamilton Depression Rating Scale (HAM-D) at baseline and at a 6-week follow-up. Paroxetine plasma concentration was measured using high-performance liquid chromatography with fluorescence detection. The Sequenom MassArray system was used for genotyping. RESULTS: At the 6-week follow-up, 219 of the 298 patients (73.5%) were responders and 79 patients (26.5%) were nonresponders to paroxetine treatment. The lower threshold concentration of paroxetine for response was 50 ng/mL, and a linear relationship was found between paroxetine plasma concentration and clinical response. The allele types for the SNPs rs 6265 (P < 0.001), rs 2973049 (P = 0.005), and rs 2216711 (P = 0.006) demonstrated significant associations with paroxetine treatment remission at week 6. CONCLUSIONS: Genetic variants in the BDNF and GDNF regions may be indicators of treatment response to paroxetine in patients with MDD.


Asunto(s)
Pueblo Asiatico , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Trastorno Depresivo Mayor/tratamiento farmacológico , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Paroxetina/uso terapéutico , Polimorfismo de Nucleótido Simple , Adulto , Factor Neurotrófico Derivado del Encéfalo/genética , Trastorno Depresivo Mayor/genética , Femenino , Genotipo , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Humanos , Masculino , Persona de Mediana Edad , Paroxetina/sangre , Inhibidores Selectivos de la Recaptación de Serotonina/sangre , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico
9.
J Neuroimmunol ; 386: 578252, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38086228

RESUMEN

Growing evidence indicates that neuroinflammation plays a critical role in anxiety, depression, and cognitive impairment. Sleep loss disrupts the host's immune balance and increases neuroinflammation. This study explored whether chronic sleep deprivation aggravates lipopolysaccharide-induced anxiety, depression, and cognitive impairment and assessed the underlying mechanisms. Lipopolysaccharide (250 µg/kg) was administered to adult mice for 9 days, accompanied with daily intermittent sleep deprivation from 12:00 to 18:00 by using an activity wheel. Anxiety, depression, and cognitive function were evaluated using a task battery consisting of an open field, elevated plus maze, tail suspension, forced swimming, and Morris water maze tests. The levels of pro-inflammatory cytokines and synaptic plasticity-associated proteins were examined by enzyme-linked immunosorbent assay and western blot, respectively. The results showed that lipopolysaccharide increased anxiety- and depression-like behaviors, impaired cognitive function, uprelated interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and decreased brain-derived neurotrophic factor (BDNF), postsynaptic density-95 (PSD-95), and synaptophysin (SYN), which were aggravated by chronic sleep deprivation. These results suggest that chronic sleep deprivation exerted adverse effects on lipopolysaccharide-induced anxiety, depression, and cognitive impairment, which was associated with changes in pro-inflammatory cytokines and synaptic plasticity associated proteins.


Asunto(s)
Disfunción Cognitiva , Citocinas , Ratones , Animales , Citocinas/metabolismo , Lipopolisacáridos/toxicidad , Lipopolisacáridos/metabolismo , Depresión/inducido químicamente , Depresión/metabolismo , Privación de Sueño/complicaciones , Enfermedades Neuroinflamatorias , Disfunción Cognitiva/inducido químicamente , Ansiedad/inducido químicamente , Plasticidad Neuronal , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Interleucina-6/metabolismo , Hipocampo
10.
Front Psychiatry ; 15: 1360305, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38803679

RESUMEN

Objectives: To examine serum concentrations of neurotensin, pannexin-1 and sestrin-2, and their correlations with subjective and objective sleep quality and cognitive function in the patients with chronic insomnia disorder (CID). Methods: Sixty-five CID patients were enrolled continuously and fifty-six good sleepers in the same period were served as healthy controls (HCs). Serum levels of neurotensin, pannexin-1 and sestrin-2 were measured by enzyme-linked immunosorbent assays. Sleep quality was assessed with the Pittsburgh Sleep Quality Index (PSQI) and polysomnography, and mood was evaluated by 17-item Hamilton Depression Rating Scale. General cognitive function was assessed with the Chinese-Beijing Version of Montreal Cognitive Assessment and spatial memory was evaluated by Blue Velvet Arena Test (BVAT). Results: Relative to the HCs, the CID sufferers had higher levels of neurotensin (t=5.210, p<0.001) and pannexin-1 (Z=-4.169, p<0.001), and lower level of sestrin-2 (Z=-2.438, p=0.015). In terms of objective sleep measures, pannexin-1 was positively associated with total sleep time (r=0.562, p=0.002) and sleep efficiency (r=0.588, p=0.001), and negatively with wake time after sleep onset (r=-0.590, p=0.001) and wake time (r=-0.590, p=0.001); sestrin-2 was positively associated with percentage of rapid eye movement sleep (r=0.442, p=0.016) and negatively with non-rapid eye movement sleep stage 2 in the percentage (r=-0.394, p=0.034). Adjusted for sex, age and HAMD, pannexin-1 was still associated with the above objective sleep measures, but sestrin-2 was only negatively with wake time (r=-0.446, p=0.022). However, these biomarkers showed no significant correlations with subjective sleep quality (PSQI score). Serum concentrations of neurotensin and pannexin-1 were positively associated with the mean erroneous distance in the BVAT. Adjusted for sex, age and depression, neurotensin was negatively associated with MoCA score (r=-0.257, p=0.044), pannexin-1 was positively associated with the mean erroneous distance in the BVAT (r=0.270, p=0.033). Conclusions: The CID patients had increased neurotensin and pannexin-1 and decreased sestrin-2 in the serum levels, indicating neuron dysfunction, which could be related to poor sleep quality and cognitive dysfunction measured objectively.

11.
Brain Behav ; 14(5): e3515, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38702895

RESUMEN

INTRODUCTION: Maternal sleep deprivation (MSD), which induces inflammation and synaptic dysfunction in the hippocampus, has been associated with learning and memory impairment in offspring. Melatonin (Mel) has been shown to have anti-inflammatory, antioxidant, and neuroprotective function. However, the beneficial effect of Mel on MSD-induced cognitive impairment and its mechanisms are unknown. METHODS: In the present study, adult offspring suffered from MSD were injected with Mel (20 mg/kg) once a day during postnatal days 61-88. The cognitive function was evaluated by the Morris water maze test. Levels of proinflammatory cytokines were examined by enzyme-linked immunosorbent assay. The mRNA and protein levels of synaptic plasticity associated proteins were examined using reverse transcription-polymerase chain reaction and western blotting. RESULTS: The results showed that MSD impaired learning and memory in the offspring mice. MSD increased the levels of interleukin (IL)-1creIL-6, and tumor necrosis factor-α and decreased the expression levels of brain-derived neurotrophic factor, tyrosine kinase receptor B, postsynaptic density protein-95, and synaptophysin in the hippocampus. Furthermore, Mel attenuated cognitive impairment and restored markers of inflammation and synaptic plasticity to control levels. CONCLUSIONS: These findings indicated that Mel could ameliorate learning and memory impairment induced by MSD, and these beneficial effects were related to improvement in inflammation and synaptic dysfunction.


Asunto(s)
Hipocampo , Melatonina , Trastornos de la Memoria , Plasticidad Neuronal , Privación de Sueño , Animales , Melatonina/farmacología , Melatonina/administración & dosificación , Privación de Sueño/complicaciones , Privación de Sueño/tratamiento farmacológico , Privación de Sueño/fisiopatología , Ratones , Masculino , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Femenino , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/etiología , Trastornos de la Memoria/fisiopatología , Plasticidad Neuronal/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Embarazo , Privación Materna , Disfunción Cognitiva/etiología , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/fisiopatología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico
12.
Brain Behav ; 14(5): e3508, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38688894

RESUMEN

BACKGROUND: The inflammation and synaptic dysfunction induced by mitochondrial dysfunction play essential roles in the learning and memory impairment associated with sleep dysfunction. Elamipretide (SS-31), a novel mitochondrion-targeted antioxidant, was proven to improve mitochondrial dysfunction, the inflammatory response, synaptic dysfunction, and cognitive impairment in models of cerebral ischemia, sepsis, and type 2 diabetes. However, the potential for SS-31 to improve the cognitive impairment induced by chronic sleep deprivation (CSD) and its underlying mechanisms is unknown. METHODS: Adult c57BL/6J mice were subjected to CSD for 21 days using an activity wheel accompanied by daily intraperitoneal injection of SS-31 (5 mg/kg). The novel object recognition and Morris water maze test were used to evaluate hippocampus-dependent cognitive function. Western blotting and reverse transcription-quantitative polymerase chain reaction assays were used to determine the effects of CSD and SS-31 on markers of mitochondria, inflammation response, and synaptic function. Enzyme-linked immunosorbent assays were used to examine the levels of proinflammatory cytokines. RESULTS: SS-31 could improve the cognitive impairment induced by CSD. In particular, SS-31 treatment restored the CSD-induced decrease in sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor γ coactivator alpha levels and the increase in levels nuclear factor kappa-B and inflammatory cytokines, including interleukin (IL)-1ß, IL-6, and tumor necrosis factor-alpha. Furthermore, SS-31 significantly increased the levels of brain-derived neurotrophic factor, postsynaptic density protein-95, and synaptophysin in CSD mice. CONCLUSION: Taken together, these results suggest that SS-31 could improve CSD-induced mitochondrial biogenesis dysfunction, inflammatory response, synaptic dysfunction, and cognitive impairment by increasing SIRT1 expression levels.


Asunto(s)
Antioxidantes , Ratones Endogámicos C57BL , Mitocondrias , Oligopéptidos , Privación de Sueño , Animales , Ratones , Privación de Sueño/tratamiento farmacológico , Privación de Sueño/complicaciones , Privación de Sueño/metabolismo , Oligopéptidos/farmacología , Oligopéptidos/administración & dosificación , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Antioxidantes/farmacología , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/etiología , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Sirtuina 1/metabolismo , Modelos Animales de Enfermedad
13.
Aging (Albany NY) ; 16(2): 1128-1144, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38231482

RESUMEN

BACKGROUND: Early life stress can cause cognitive impairment in aged offspring. Environmental enrichment (EE) is considered to be an effective non-pharmacological treatment for improving cognitive decline. The aim of this research was to evaluate the effect of EE, on cognitive impairment in aged offspring induced by maternal sleep deprivation (MSD) and the underlying mechanisms involved to investigate its potential value in clinical practice. METHODS: CD-1 damns were subjected or not to sleep deprivation during late gestation. Twenty-one days after birth, the offspring were assigned to standard or EE cages. At 18 months-old, the learning and memory function of the offspring mice was evaluated using Morris water maze. The hippocampal and prefrontal cortical levels of protein, gene, proinflammation cytokines, and oxidative stress indicators was examined by Western blot, real-time polymerase chain reaction, enzyme linked immunosorbent assay, and biochemical assays. RESULTS: Offspring in MSD group exhibited declined learning and memory abilities compared with control animals. Moreover, the hippocampal and prefrontal cortical levels of Sirtuin1 (Sirt1), peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α), postsynaptic density protein-95, and synaptophysin were lower and those of proinflammation cytokines higher in the MSD group; meanwhile, the superoxide dismutase content was higher and the malondialdehyde and reactive oxygen species contents were lower. However, these deleterious changes were ameliorated by exposure to EE. CONCLUSIONS: EE attenuates MSD-induced cognitive impairment, oxidative stress, and neuroinflammation and reverses the reduction in synaptic protein levels in aged offspring mice via the Sirt1/PGC-1α pathway.


Asunto(s)
Disfunción Cognitiva , Privación de Sueño , Ratones , Animales , Embarazo , Femenino , Privación de Sueño/complicaciones , Privación de Sueño/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Disfunción Cognitiva/etiología , Disfunción Cognitiva/terapia , Disfunción Cognitiva/metabolismo , Mitocondrias/metabolismo , Citocinas/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
14.
Sleep Med ; 117: 162-168, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38547593

RESUMEN

BACKGROUND AND OBJECTIVE: Rumination, a common factor of chronic insomnia disorder (CID) caused by cognitive-emotional arousal, is associated with an increased amount of rapid eye movement (REM) sleep. However, the specific subtypes, such as phasic REM and tonic REM, that contribute to the increased REM sleep have not been reported. This study aimed to determine the association between rumination and different REM sleep subtypes in patients with CID. METHODS: This study enrolled 35 patients with CID and 27 age- and sex-matched healthy controls. The Immersion-Rumination Questionnaire evaluated participants' rumination, and the Insomnia Severity Index was used to assess insomnia severity. Finally, polysomnography was used to monitor objective sleep quality and quantification of different types of REM. RESULTS: The CID patients had higher rumination scores than the healthy controls. They had a shorter REM sleep duration, less phasic REM, a lower percentage of phasic REM time, and a higher percentage of tonic REM time. Spectral analysis revealed that the patients affected by insomnia had higher ß power during REM sleep, higher ß and σ power during phasic REM sleep, and higher ß, and γ power during tonic REM sleep. Partial correlation analysis showed that rumination in the CID patients correlated negatively with the duration of phasic REM sleep. Additionally, rumination correlated negatively with δ power in REM sleep and positively with ß power in REM sleep, tonic REM sleep, phasic REM sleep, N3and N2 sleep in the patients with CID. CONCLUSION: The CID patients had stronger rumination, reduced total and phasic REM sleep, and the stronger rumination was, the shorter phasic REM was and the higher fast (ß) wave power in REM sleep.


Asunto(s)
Trastorno de la Conducta del Sueño REM , Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Sueño REM , Trastornos del Inicio y del Mantenimiento del Sueño/complicaciones , Polisomnografía , Nivel de Alerta , Trastorno de la Conducta del Sueño REM/complicaciones
15.
Sleep Med ; 117: 177-183, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554533

RESUMEN

OBJECTIVES: To explore the relationship between nocturnal levels of stress-related hormones and different sleep-wake states in chronic insomnia disorder (CID) patients. METHODS: Thirty-three CID patients and 34 good sleepers were enrolled and completed assessment of sleep log, Pittsburgh Sleep Quality Index and Insomnia Severity Index. During a-overnight polysomnography monitoring, the patients' vein bleeds were continually collected at different time points (pre-sleep, deep-sleep, 5-min or 30-min waking, and morning waking-up). The control subjects' bleeds were collected only at 22:00 and morning waking-up. The serum hormones were detected using enzyme-linked immunosorbent assay. RESULTS: Compared with at pre-sleep, the level of cortisol was significantly higher at morning waking-up respectively in two-group subjects (Ps < 0.001), with insignificant inter-group differences in cortisol, corticotropin releasing hormone and copeptin at the two time-points. In the patients, the nocturnal secretion curves of three hormones were similar, with the highest concentration at morning waking-up, followed by 30-min waking, 5-min waking, pre-sleep, and deep-sleep. The patients' cortisol (Z = 79.192, P < 0.001) and copeptin (Z = 12.333, P = 0.015) levels were statistically different at different time-points, with higher cortisol at morning waking-up relative to deep-sleep, pre-sleep and 5-min waking (Ps < 0.05), and at 30-min waking relative to deep-sleep and pre-sleep (Ps < 0.05), and higher copeptin at morning waking-up relative to deep-sleep (P < 0.05). CONCLUSIONS: In CID, the nocturnal wakes were instantaneously accompanied by high level, and deep sleep was accompanied by the lowest levels, of stress-related hormones, especially in cortisol, supporting the insomniac hypothesis of increased nocturnal pulse-release of cortisol.


Asunto(s)
Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Proyectos Piloto , Hidrocortisona , Sueño , Polisomnografía
16.
Brain Behav ; 13(12): e3311, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37932957

RESUMEN

INTRODUCTION: Currently, electroencephalogram (EEG)/electromyogram (EMG) system is widely regarded as the "golden standard" for sleep monitoring. Imperfectly, its invasive monitoring may somehow interfere with the natural state of sleep. Up to now, noninvasive methods for sleep monitoring have developed, which could preserve the undisturbed and naïve sleep state of mice to the greatest extent, but the feasibility of their application under different conditions should be extensive validated. METHODS: Based on existing research, we verified the feasibility of a sleep monitoring system based on mouse behaviors under different conditions. The experimental mice were exposed to various stresses and placed into a combined device comprising noninvasive sleep monitoring equipment and an EEG/EMG system, and the sleep status was recorded under different physiological, pharmacological, and pathophysiological conditions. The consistency of the parameters obtained from the different systems was calculated using the Bland-Altman statistical method. RESULTS: The results demonstrated that the physiological sleep times determined by noninvasive sleep monitoring system were highly consistent with those obtained from the EEG/EMG system, and the coefficients were 94.4% and 95.1% in C57BL/6J and CD-1 mice, respectively. The noninvasive sleep monitoring system exhibited high sensitivity under the sleep-promoting effect of diazepam and caffeine-induced wakefulness, which was indicated by its ability to detect the effect of dosage on sleep times, and accurate determination of the sleep/wakeful status of mice under different pathophysiological conditions. After combining the data obtained from all the mice, the coefficient between the sleep times detected by behavior-based sleep monitoring system and those obtained from the EEG/EMG equipment was determined to .94. CONCLUSION: The results suggested that behavior-based sleep monitoring system could accurately evaluate the sleep/wakeful states of mice under different conditions.


Asunto(s)
Electroencefalografía , Sueño , Ratones , Animales , Polisomnografía/métodos , Estudios de Factibilidad , Ratones Endogámicos C57BL , Sueño/fisiología , Electroencefalografía/métodos , Electromiografía/métodos
17.
Front Behav Neurosci ; 17: 1226300, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37560531

RESUMEN

Objective: Studies have suggested that prenatal exposure to inflammation increases the risk of neuropsychiatric disorders, including anxiety, depression, and cognitive dysfunction. Because of anatomical and hormonal alterations, pregnant women frequently experience sleep dysfunction, which can enhance the inflammatory response. The aim of this study was to explore the effects of maternal sleep deprivation on prenatal inflammation exposure-induced behavioral phenotypes in offspring and identify the associated mechanisms. Methods: Pregnant mice received an intraperitoneal injection of lipopolysaccharide (LPS) on gestational day 15 and were subsequently subjected to sleep deprivation during gestational days 15-21. Anxiety-like behavior was evaluated by the open field test and the elevated plus maze test. Depression-like behavior was assessed by the tail suspension test and the forced swimming test. Cognitive function was determined using the Morris water maze test. The levels of markers of inflammation and synaptic function were examined employing general molecular biological techniques. Results: The results showed that prenatal exposure to LPS resulted in anxiety- and depression-like symptoms and learning and memory deficits, and these effects were exacerbated by maternal sleep deprivation. Furthermore, maternal sleep deprivation aggravated the prenatal LPS exposure-induced increase in the expression of interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α and decrease in the levels of postsynaptic density-95 and synaptophysin in the hippocampus. Discussion: Collectively, these results suggested that maternal sleep deprivation exacerbates anxiety, depression, and cognitive impairment induced by prenatal LPS exposure, effects that were associated with an inflammatory response and synaptic dysfunction.

18.
Front Behav Neurosci ; 17: 1271653, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38074521

RESUMEN

Maternal exposure to inflammation may represent a major risk factor for neuropsychiatric disorders with associated cognitive dysfunction in offspring in later life. Growing evidence has suggested that resveratrol exerts a beneficial effect on cognitive impairment via its anti-inflammatory and antioxidant properties and by ameliorating synaptic dysfunction. However, how resveratrol affects maternal immune activation-induced cognitive dysfunction and the underlying mechanisms are unclear. In the present study, pregnant dams were given an intraperitoneal injection of lipopolysaccharide (LPS; 50 µg/kg) on gestational day 15. Subsequently, the offspring mice were treated or not with resveratrol (40 mg/kg) from postnatal day (PND) 60 to PND 88. Male offspring were selected for the evaluation of cognitive function using the Morris water maze test. The hippocampal levels of pro-inflammatory cytokines were examined by ELISA. The mRNA and protein levels of sirtuin-1 (SIRT1), brain-derived neurotrophic factor (BDNF), postsynaptic density protein 95 (PSD-95), and synaptophysin (SYP) were determined by RT-qPCR and western blot, respectively. The results showed that male offspring mice exposed to LPS in utero exhibited learning and memory impairment. Additionally, the levels of interleukin (IL)-1ß, IL-6, and tumor necrosis factor-alpha (TNF-α) were increased while those of SIRT1, BDNF, PSD-95, and SYP were decreased in male offspring of LPS-treated mothers. Treatment with resveratrol reversed cognitive impairment and attenuated the increase in the levels of pro-inflammatory cytokines induced by maternal immune activation in the offspring mice. Furthermore, resveratrol reversed the deleterious effects of maternal immune activation on SIRT1, BDNF, PSD-95, and SYP levels in the hippocampus. Collectively, our results suggested that resveratrol can effectively improve learning and memory impairment induced by maternal immune activation via the modulation of inflammation and synaptic dysfunction.

19.
Brain Behav ; 13(6): e3018, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37073496

RESUMEN

INTRODUCTION: Growing evidence clearly demonstrates that maternal rodents exposure to sleep deprivation (SD) during late pregnancy impairs learning and memory in their offspring. Epigenetic mechanisms, particularly histone acetylation, are known to be involved in synaptic plasticity, learning, and memory. We hypothesize that the cognitive decline induced by SD during late pregnancy is associated with histone acetylation dysfunction, and this effect could be reversed by an enriched environment (EE). METHODS: In the present study, pregnant CD-1 mice were exposed to SD during the third trimester of pregnancy. After weaning, all offspring were randomly assigned to two subgroups in either a standard environment or an EE. When offspring were 3 months old, the Morris water maze was used to evaluate hippocampal-dependent learning and memory ability. Molecular biological techniques, including western blot and real-time fluorescence quantitative polymerase chain reaction, were used to examine the histone acetylation pathway and synaptic plasticity markers in the hippocampus of offspring. RESULTS: The results showed that the following were all reversed by EE treatment: maternal SD (MSD)-induced cognitive deficits including spatial learning and memory; histone acetylation dysfunction including increased histone deacetylase 2 (HDAC2) and decreased histone acetyltransferase (CBP), and the acetylation levels of H3K9 and H4K12; synaptic plasticity dysfunction including decreased brain-derived neurotrophic factor; and postsynaptic density protein-95. CONCLUSIONS: Our findings suggested that MSD could damage learning ability and memory in offspring via the histone acetylation pathway. This effect could be reversed by EE treatment.


Asunto(s)
Disfunción Cognitiva , Histonas , Femenino , Animales , Embarazo , Ratones , Histonas/metabolismo , Privación de Sueño/complicaciones , Privación de Sueño/metabolismo , Acetilación , Disfunción Cognitiva/metabolismo , Aprendizaje Espacial , Hipocampo/metabolismo , Plasticidad Neuronal , Cognición
20.
Front Aging Neurosci ; 15: 1177250, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37168717

RESUMEN

Early-life stress disrupts central nervous system development and increases the risk of neuropsychiatric disorder in offspring based on rodent studies. Maternal sleep deprivation (MSD) in rodents has also been associated with depression and cognitive decline in adult offspring. However, it is not known whether these issues persist into old age. Environmental enrichment is a non-pharmacological intervention with proven benefits in improving depression and cognitive impairment; however, it is unclear whether these benefits hold for aging mice following MSD exposure. The aim of this study was to explore the effects of MSD on depression and cognition in elderly offspring CD-1 mice and to determine whether long-term environmental enrichment could alleviate these effects by improving neuroinflammation and synaptic plasticity. The offspring mice subjected to MSD were randomly assigned to either a standard environment or an enriched environment. At 18 months of age, the forced swimming and tail suspension tests were used to evaluated depression-like behaviors, and the Morris water maze test was used to evaluate cognitive function. The expression levels of hippocampal proinflammatory cytokines and synaptic plasticity-associated proteins were also measured. MSD increased depression-like behaviors and impaired cognition function in aging CD-1 offspring mice. These effects were accompanied by upregulated interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α expression, and downregulated brain-derived neurotrophic factor, tyrosine kinase receptor B, postsynaptic density-95, and synaptophysin expression in the hippocampus. All of these changes were reversed by long-term exposure to an enriched environment. These findings suggest that MSD exerts long-term effects on the behaviors of offspring in mice, leading to depression and cognitive impairment in older age. Importantly, long-term environmental enrichment could counteract the behavior difficulties induced by MSD through improving hippocampal proinflammatory cytokines and synaptic plasticity-associated proteins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA