Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Chem Biodivers ; 21(5): e202400337, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38470409

RESUMEN

Rice sheath blight (RSB), caused by Rhizoctonia solani, is a significant disease of rice. The negative effects of chemical fungicides have created an urgent need for low-toxicity botanical fungicides. Our previous research revealed that the ethanol crude extract of Moutan Cortex (MC) exhibited superior antifungal activity against R. solani at 1000 µg/mL, resulting in a 100 % inhibition rate. The antifungal properties were mainly found in the petroleum ether extract. However, the active ingredients of the extract are still unclear. In this study, gas chromatography-mass spectrometry (GC-MS) was utilised for the analysis of its chemical components. The mycelium growth rate method was utilized to detect the antifungal activity. The findings indicated that paeonol constituted the primary active component, with a content of more than 96 %. Meanwhile, paeonol was the most significant antifungal active ingredient, the antifungal activity of paeonol (EC50=44.83 µg/mL) was much higher than that of ß-sitosterol and ethyl propionate against R. solani. Observation under an optical microscope revealed that paeonol resulted in abnormal mycelial morphology. This study provided theoretical support for identifying monomer antifungal compounds and developing biological fungicides for R. solani.


Asunto(s)
Antifúngicos , Pruebas de Sensibilidad Microbiana , Paeonia , Rhizoctonia , Rhizoctonia/efectos de los fármacos , Antifúngicos/farmacología , Antifúngicos/química , Antifúngicos/aislamiento & purificación , Paeonia/química , Acetofenonas/farmacología , Acetofenonas/química , Acetofenonas/aislamiento & purificación , Cromatografía de Gases y Espectrometría de Masas , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/aislamiento & purificación , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Relación Dosis-Respuesta a Droga
2.
Small ; 18(49): e2204638, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36310146

RESUMEN

Although tremendous progress has recently been made in quasi-2D perovskite light-emitting diodes (PeLEDs), the performance of red PeLEDs emitting at ≈650-660 nm, which have wide prospects for application in photodynamic therapy, is still limited by an inefficient energy transfer process between the quasi-2D perovskite layers. Herein, a symmetric molecule of 3,3'-(9H-fluorene-9,9-diyl)dipropanamide (FDPA) is designed and developed with two functional acylamino groups and incorporated into the quasi-2D perovskites as the additive for achieving high-performance red PeLEDs. It is demonstrated that the agent can simultaneously diminish the van der Waals gaps between individual perovskite layers and passivate uncoordinated Pb2+ related defects at the surface and grain boundaries of the quasi-2D perovskites, which truly results in an efficient energy transfer in the quasi-2D perovskite films. Consequently, the red PeLEDs emitting at 653 nm with a peak external quantum efficiency of 18.5% and a maximum luminance of 2545 cd m-2 are achieved, which is among the best performing red quasi-2D PeLEDs emitting at ≈650-660 nm. This work opens a way to further improve the electroluminescence performance of red PeLEDs.

3.
Molecules ; 27(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36500385

RESUMEN

Mitochondria play a central role in the survival or death of neuronal cells, and they are regulators of energy metabolism and cell death pathways. Many studies support the role of mitochondrial dysfunction and oxidative damage in the pathogenesis of Alzheimer's disease. Biatractylolide (BD) is a kind of internal symmetry double sesquiterpene novel ester compound isolated from the Chinese medicinal plant Baizhu, has neuroprotective effects in Alzheimer's disease. We developed a systematic pharmacological model based on chemical pharmacokinetic and pharmacological data to identify potential compounds and targets of Baizhu. The neuroprotective effects of BD in PC12 (rat adrenal pheochromocytoma cells) and SH-SY5Y (human bone marrow neuroblastoma cells) were evaluated by in vitro experiments. Based on the predicted results, we selected 18 active compounds, which were associated with 20 potential targets and 22 signaling pathways. Compound-target, target-disease and target-pathway networks were constructed using Cytoscape 3.2.1. And verified by in vitro experiments that BD could inhibit Aß by reducing oxidative stress and decreasing CytC release induced mPTP opening. This study provides a theoretical basis for the development of BD as an anti-Alzheimer's disease drug.


Asunto(s)
Enfermedad de Alzheimer , Neuroblastoma , Fármacos Neuroprotectores , Humanos , Ratas , Animales , Fármacos Neuroprotectores/química , Apoptosis , Línea Celular Tumoral , Neuroblastoma/tratamiento farmacológico , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo
4.
Behav Brain Res ; 468: 115022, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38697301

RESUMEN

Abl2/Arg (ABL-related gene) is a member of the Abelson family of nonreceptor tyrosine kinases, known for its role in tumor progression, metastasis, tissue injury responses, inflammation, neural degeneration, and other diseases. In this study, we developed Abl2/Arg knockout (abl2-/-) mice to explore its impact on sensory/motor functions and emotion-related behaviors. Our findings show that abl2-/- mice exhibit normal growth and phenotypic characteristics, closely resembling their wild-type (WT) counterparts. Behavioral tests, including the elevated plus maze, marble-burying behavior test, and open field test, indicated pronounced anxiety-like behaviors in abl2-/- mice compared to WT mice. Furthermore, in the tail suspension test, abl2-/- mice showed a significant decrease in mobility time, suggesting depressive-like behavior. Conversely, in the Y-maze and cliff avoidance reaction tests, no notable differences were observed between abl2-/- and WT mice, suggesting the absence of working memory deficits and impulsivity in abl2-/- mice. Proteomic analysis of the hippocampus in abl2-/- mice highlighted significant alterations in proteins related to anxiety and depression, especially those associated with the GABAergic synapse in inhibitory neurotransmission. The expression of Gabbr2 was significantly reduced in the hippocampus of abl2-/- compared to WT mice, and intraperitoneal treatment of GABA receptor agonist Gaboxadol normalized anxiety/depression-related behaviors of abl2-/- mice. These findings underscore the potential role of Abl2/Arg in influencing anxiety and depressive-like behaviors, thereby contributing valuable insights into its broader physiological and pathological functions.


Asunto(s)
Ansiedad , Conducta Animal , Depresión , Hipocampo , Ratones Noqueados , Proteínas Tirosina Quinasas , Animales , Masculino , Ratones , Ansiedad/metabolismo , Conducta Animal/fisiología , Depresión/fisiopatología , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Aprendizaje por Laberinto/fisiología , Ratones Endogámicos C57BL , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/deficiencia , Ratones de la Cepa 129
5.
Shanghai Kou Qiang Yi Xue ; 33(1): 85-89, 2024 Feb.
Artículo en Zh | MEDLINE | ID: mdl-38583031

RESUMEN

PURPOSE: To study the relationship between the expression of prostaglandin E2 (PGE2) and cyclooxygenase-2 (COX-2) and the osteogenic activity and oxygen level of alveolar bone. METHODS: The alveolar bones of 56 patients with chronic periodontitis who received dental treatment from March 2021 to March 2023 were collected as the experimental (periodontitis) group, and the healthy alveolar bones of 53 patients who received dental treatment during the same period were selected as the control group. The osteoblasts were cultured by tissue block culture, and modified Kaplow's alkaline phosphatase (ALP) staining was used to identify the cells. COX-2, PGE2 and osteoclastogenesis inhibitory factor (OPG) receptor activator of nuclear factor-κb ligand (RANKL) and other indicators were determined by ELISA. PGE2, COX-2, OPG, internal oxygen level, ALP, RANKL and their correlation were compared between the two groups. Statistical analysis was performed with SPSS 27.0 software package. RESULTS: PGE2, COX-2 and RANKL in periodontitis group were significantly higher than those in the control group, but OPG, internal oxygen level and ALP were significantly lower than those in the control group (P<0.05). PGE2 and COX2 were highly positively correlated with OPG, internal oxygen level and ALP, but were highly positively correlated with RANKL(P<0.05). CONCLUSIONS: The expression of PGE2 and COX-2 is highly negatively correlated with ALP and oxygen levels. Clinical treatment may consider increasing oxygen levels, increasing oxygen partial pressure, and regulating ALP levels by drugs, so as to change the inflammatory condition of periodontitis or other dental diseases.


Asunto(s)
Dinoprostona , Periodontitis , Humanos , Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Dinoprostona/farmacología , Osteoblastos/metabolismo , Osteogénesis , Osteoprotegerina/metabolismo , Ligando RANK/metabolismo
6.
Heliyon ; 10(2): e24004, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38312593

RESUMEN

Traditional non-steroidal anti-inflammatory drugs (NSAIDs) show serious adverse effects during clinical use, which limits their usage. Oxicams (e.g., piroxicam, meloxicam) are widely used as NSAIDs. However, selectivity to cyclooxygenase (COX) 2 may cause cardiovascular problems considering the long-term use of the drugs. Therefore, it is important to develop new non-steroidal compounds as anti-inflammatory drugs. In the present study, we evaluated the anti-inflammatory activity of a newly developed nonsteroidal drug XK01. Our data showed that XK01 reduced the contents of nitric oxide (NO) and reactive oxygen species (ROS)and inhibited the transcription levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1ß in a dose-dependent manner in lipopolysaccharide (LPS)-stimulated mouse RAW264.7 macrophages. XK01 showed no significant inhibitory effect on COX-1, but inhibited the expression of COX-2. At molecular level, XK01 prevented the translocation of p65 protein from the cytoplasm to the nucleus and inhibited the phosphorylation of p65, IκB, and MAPKs proteins. And high concentration of XK01 also inhibited the phosphorylation of JNK, p38 and ERK, showing stronger effect than that of meloxicam. In addition, the anti-inflammatory activity of XK01 was further validated in Xylene-induced mouse ear swelling model. Thus, this study verified that XK01 inhibits the expression of inflammatory mediators and COX-2, and exhibits potential anti-inflammatory effects via suppressing the NF-κB and MAPK pathway.

7.
CNS Neurosci Ther ; 30(4): e14498, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-37867481

RESUMEN

BACKGROUND: Repetitive transcranial magnetic stimulation (rTMS) is an effective therapy in post-stroke motor recovery. However, the underlying mechanisms of rTMS regulates long-lasting changes with synaptic transmission and glutamate receptors function (including AMPARs or NMDARs) remains unclear. METHODS: Mice were received 10-Hz rTMS treatment once daily on the third day after photothrombotic (PT) stroke for 18 days. Motor behaviors and the Western blot were used to evaluate the therapeutic efficacy of 10-Hz rTMS in the mice with PT model. Moreover, we used wild-type (WT) and NEX-α3-/- mice to further explore the 10-Hz rTMS effect. RESULTS: We found that 10-Hz rTMS improved the post-stroke motor performance in the PT mice. Moreover, the levels of AMPAR, vGlut1, and integrin α3 in the peri-infarct were significantly increased in the rTMS group. In contrast, 10-Hz rTMS did not induce these aforementioned effects in NEX-α3-/- mice. The amplitude of AMPAR-mediated miniature excitatory postsynaptic currents (EPSCs) and evoked EPSCs was increased in the WT + rTMS group, but did not change in NEX-α3-/- mice with rTMS. CONCLUSIONS: In this study, 10-Hz rTMS improved the glutamatergic synaptic transmission in the peri-infract cortex through effects on integrin α3 and AMPARs, which resulted in motor function recovery after stroke.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Animales , Ratones , Humanos , Estimulación Magnética Transcraneal/métodos , Integrina alfa3 , Resultado del Tratamiento , Accidente Cerebrovascular/terapia , Transmisión Sináptica , Isquemia , Rehabilitación de Accidente Cerebrovascular/métodos
8.
Sci Adv ; 10(15): eadk9460, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38598623

RESUMEN

All-solution-processed organic optoelectronic devices can enable the large-scale manufacture of ultrathin wearable electronics with integrated diverse functions. However, the complex multilayer-stacking device structure of organic optoelectronics poses challenges for scalable production. Here, we establish all-solution processes to fabricate a wearable, self-powered photoplethysmogram (PPG) sensor. We achieve comparable performance and improved stability compared to complex reference devices with evaporated electrodes by using a trilayer device structure applicable to organic photovoltaics, photodetectors, and light-emitting diodes. The PPG sensor array based on all-solution-processed organic light-emitting diodes and photodetectors can be fabricated on a large-area ultrathin substrate to achieve long storage stability. We integrate it with a large-area, all-solution-processed organic solar module to realize a self-powered health monitoring system. We fabricate high-throughput wearable electronic devices with complex functions on large-area ultrathin substrates based on organic optoelectronics. Our findings can advance the high-throughput manufacture of ultrathin electronic devices integrating complex functions.

9.
Nat Commun ; 15(1): 4474, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796514

RESUMEN

Olfaction feedback systems could be utilized to stimulate human emotion, increase alertness, provide clinical therapy, and establish immersive virtual environments. Currently, the reported olfaction feedback technologies still face a host of formidable challenges, including human perceivable delay in odor manipulation, unwieldy dimensions, and limited number of odor supplies. Herein, we report a general strategy to solve these problems, which associates with a wearable, high-performance olfactory interface based on miniaturized odor generators (OGs) with advanced artificial intelligence (AI) algorithms. The OGs serve as the core technology of the intelligent olfactory interface, which exhibit milestone advances in millisecond-level response time, milliwatt-scale power consumption, and the miniaturized size. Empowered by robust AI algorithms, the olfactory interface shows its great potentials in latency-free mixed reality (MR) and fast olfaction enhancement, thereby establishing a bridge between electronics and users for broad applications ranging from entertainment, to education, to medical treatment, and to human machine interfaces.


Asunto(s)
Algoritmos , Inteligencia Artificial , Odorantes , Olfato , Dispositivos Electrónicos Vestibles , Humanos , Olfato/fisiología , Interfaz Usuario-Computador , Adulto , Masculino
10.
J Fam Psychol ; 37(8): 1220-1229, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37707464

RESUMEN

The contribution of fathers and family dynamics to the deleterious effects of mothers' depressive symptoms on children's behavioral adjustment has been evaluated in this study. Using longitudinal data spanning from toddlerhood to grade school (N = 1,311), this study examined whether negative emotional states in both parents related to mothers' cumulative depressive symptoms during the early years of children were associated with children's later internalizing and externalizing problems in grade school. A random intercept cross-lagged panel model was used to segregate between- and within-individual effects. The results demonstrated that, independent of fathers' depressive symptoms, high levels of maternal cumulative depressive symptoms were positively associated with negative emotional states in both parents over time, which then independently mediated the longitudinal associations between mothers' depressive symptoms and children's subsequent behavioral maladjustment, particularly internalizing problems, at the between-individual trait level. The findings highlight the interdependence of family members from a longitudinal perspective and support the unique contributions of both parents' negative emotional states to better understand children's behavioral adjustment in the context of maternal depressive symptoms. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Asunto(s)
Depresión , Madres , Femenino , Humanos , Niño , Depresión/etiología , Depresión/psicología , Madres/psicología , Padres/psicología , Emociones , Relaciones Padres-Hijo
11.
ACS Appl Mater Interfaces ; 15(12): 15768-15774, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36924193

RESUMEN

Multisource coevaporation is such a promising method for the preparation of perovskite films. However, there is limited research about the effects of the buried interface on thermal-evaporated perovskite light-emitting diodes (PeLEDs). In this study, the effects of buried interfaces on thermal-evaporated all-inorganic perovskite films are systematically investigated. It is found that the low-surface-energy buried interface promotes the formation of columnar grain by suppressing heterogeneous nucleation, and functional groups on the high-surface-energy interface have a significant effect on the actual element ratio of the film. The substrate temperature can affect the nucleation and film-formation kinetics of the columnar grains. As a result of the synergistic strategy, a peak external quantum efficiency (EQE) of 8.6% is achieved in the green PeLEDs with a stable emission peak at 516 nm, which is among the best thermal-evaporated PeLEDs reported. This work provides an insight into the preparation of perovskites by thermal evaporation and builds the groundwork for future studies.

12.
Adv Mater ; 35(8): e2209002, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36493461

RESUMEN

Pure-red perovskite LEDs (PeLEDs) based on CsPb(Br/I)3 nanocrystals (NCs) usually suffer from a compromise in emission efficiency and spectral stability on account of the surface halide vacancies-induced nonradiative recombination loss, halide phase segregation, and self-doping effect. Herein, a "halide-equivalent" anion of benzenesulfonate (BS- ) is introduced into CsPb(Br/I)3 NCs as multifunctional additive to simultaneously address the above challenging issues. Joint experiment-theory characterizations reveal that the BS- can not only passivate the uncoordinated Pb2+ -related defects at the surface of NCs, but also increase the formation energy of halide vacancies. Moreover, because of the strong electron-withdrawing property of sulfonate group, electrons are expected to transfer from the CsPb(Br/I)3 NC to BS- for reducing the self-doping effect and altering the n-type behavior of CsPb(Br/I)3 NCs to near ambipolarity. Eventually, synergistic boost in device performance is achieved for pure-red PeLEDs with CIE coordinates of (0.70, 0.30) and a champion external quantum efficiency of 23.5%, which is one of the best value among the ever-reported red PeLEDs approaching to the Rec. 2020 red primary color. Moreover, the BS- -modified PeLED exhibits negligible wavelength shift under different operating voltages. This strategy paves an efficient way for improving the efficiency and stability of pure-red PeLEDs.

13.
Adv Mater ; 35(2): e2206969, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36303520

RESUMEN

A room-temperature technique with all-nonpolar-solvent, which circumvents the sensitivity of ionic perovskite to polar solvent, has become attractive for the synthesis of metal halide perovskite nanocrystals (PNCs). However, the lack of understanding of the inner mechanism, especially for the state of the precursor and the crystallization process of the PNCs, hinders further development of this technique. Here, through systematic study of the Pb precursor and in situ characterization of the PNCs, it is revealed that the reverse micelle nature of the Pb precursor exactly creates a novel demulsification-crystallization (D-C) model, namely, a two-stage nucleation is divided by a demulsification process for the PNCs. On this basis, a top efficiency for green light-emitting diodes based on PNCs is obtained with a maximum external quantum efficiency of 22.5% through tailoring the D-C model using a multiple-acid-anion synergistic assisted strategy to obtain high-quality PNCs. Beyond the high efficiency, the work paves the way for diverse ideas in PNC synthesis.

14.
Adv Mater ; 35(45): e2303938, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37464982

RESUMEN

Achieving high-performance perovskite light-emitting diodes (PeLEDs) with pure-red electroluminescence for practical applications remains a critical challenge because of the problematic luminescence property and spectral instability of existing emitters. Herein, high-efficiency Rec. 2020 pure-red PeLEDs, simultaneously exhibiting exceptional brightness and spectral stability, based on CsPb(Br/I)3 perovskite nanocrystals (NCs) capping with aromatic amino acid ligands featuring cation-π interactions, are reported. It is proven that strong cation-π interactions between the PbI6 -octahedra of perovskite units and the electron-rich indole ring of tryptophan (TRP) molecules not only chemically polish the imperfect surface sites, but also markedly increase the binding affinity of the ligand molecules, leading to high photoluminescence quantum yields and greatly enhanced spectral stability of the CsPb(Br/I)3 NCs. Moreover, the incorporation of small-size aromatic TRP ligands ensures superior charge-transport properties of the assembled emissive layers. The resultant devices emitting at around 635 nm demonstrate a champion external quantum efficiency of 22.8%, a max luminance of 12 910 cd m-2 , and outstanding spectral stability, representing one of the best-performing Rec. 2020 pure-red PeLEDs achieved so far.

15.
Micromachines (Basel) ; 13(6)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35744530

RESUMEN

Biomass materials are perceived as sustainable, carbon-rich precursors for the fabrication of carbon materials. In this study, we demonstrated the capacitance performance of biomass-derived carbon, produced by using golden shower tree seeds (GTs) as carbon precursors and potassium ferrate (K2FeO4) as the activation agent. The as-prepared porous carbon (GTPC) possessed an ultrahigh specific surface area (1915 m2 g-1) and abundant pores. They also exhibited superior electrochemical performance, owing to their well-constructed porous structure, high surface area, and optimized porous structure. Optimized activated carbon (GTPC-1) was used to assemble a symmetric solid-state supercapacitor device with poly(vinyl alcohol) (PVA)/H2SO4 as a solid-state gel electrolyte. The device exhibited a maximum areal energy density of 42.93 µWh cm-2 at a power density of 520 µW cm-2.

16.
Nanomaterials (Basel) ; 12(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36234401

RESUMEN

In this paper, we design a multifunctional micro-nano device with a hybrid metamaterial-waveguide system, which leads to a triple plasmon-induced transparency (PIT). The formation mechanisms of the three transparent peaks have their own unique characteristics. First, PIT-I can be switched into the BIC (Friedrich-Wintge bound state in continuum), and the quality factors (Q-factors) of the transparency window of PIT-I are increased during the process. Second, PIT-II comes from near-field coupling between two bright modes. Third, PIT-III is generated by the near-field coupling between a low-Q broadband bright mode and a high-Q narrowband guide mode, which also has a high-Q transparent window due to the guide mode. The triple-PIT described above can be dynamically tuned by the gate voltage of the graphene, particularly for the dynamic tuning of the Q values of PIT-I and PIT-III. Based on the high Q value of the transparent window, our proposed structure can be used for highly sensitive refractive index sensors or devices with prominent slow light effects.

17.
Stem Cells Transl Med ; 11(3): 297-309, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35267023

RESUMEN

Mesenchymal stem cells (MSCs) are a promising cellular vehicle for transferring anti-cancer factors to malignant tumors. Currently, a variety of anti-cancer agents, including the tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), have been loaded into MSCs derived from a range of sources through different engineering methods. These engineered MSCs exhibit enormous therapeutic potential for various cancers. To avoid the intrinsic defects of MSCs derived from tissues and the potential risk of viral vectors, TRAIL was site-specifically integrated into the ribosomal DNA (rDNA) locus of human-induced pluripotent stem cells (iPSCs) using a non-viral rDNA-targeting vector and transcription activator-like effector nickases (TALENickases). These genetically modified human iPSCs were differentiated into an unlimited number of homogeneous induced MSCs (TRAIL-iMSCs) that overexpressed TRAIL in both culture supernatants and cell lysates while maintaining MSC-like characteristics over continuous passages. We found that TRAIL-iMSCs significantly induced apoptosis in A375, A549, HepG2, and MCF-7 cells in vitro. After intravenous infusion, TRAIL-iMSCs had a prominent tissue tropism for A549 or MCF-7 xenografts and significantly inhibited tumor growth through the activation of apoptotic signaling pathways without obvious side effects in tumor-bearing mice models. Altogether, our results showed that TRAIL-iMSCs have strong anti-tumor effects in vitro and in vivo on a range of cancers. This study allows for the development of an unlimited number of therapeutic gene-targeted MSCs with stable quality and high homogeneity for cancer therapy, thus highlighting a universal and safe strategy for stem cell-based gene therapy with high potential for clinical applications.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Mesenquimatosas , Neoplasias , Animales , Diferenciación Celular , Humanos , Ratones , Neoplasias/metabolismo , Neoplasias/terapia , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo
18.
J Phys Chem Lett ; 12(9): 2437-2443, 2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33661637

RESUMEN

CsPbI3 perovskite nanocrystals (NCs) have recently emerged as promising materials for optoelectronic devices because of their superior properties. However, the poor stability of the CsPbI3 NCs induced by easy ligand desorption represents a key issue limiting their practical applications. Herein, we report stable and highly luminescent black-phase CsPbI3 NCs passivated by novel ligands of sodium dodecyl sulfate (SDS). Theoretical calculation results reveal a stronger adsorption energy of SDS molecules at the CsPbI3 surface than that of commonly used oleic acid. As a result, the defect formation caused by the ligand loss during the purification process is greatly suppressed. The optimized SDS-CsPbI3 NCs exhibit significantly reduced surface defects, much enhanced stability, and superior photoluminescence efficiency. The red perovskite light-emitting diodes based on the SDS-CsPbI3 NCs demonstrate an external quantum efficiency of 8.4%, which shows a 4-fold improvement compared to the devices based on the oleic acid-modified CsPbI3 NCs.

19.
Adv Mater ; 33(39): e2103017, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34369026

RESUMEN

Development of large-area flexible organic solar cells (OSCs) is highly desirable for their practical applications. However, the efficiency of the large-area flexible OSCs severely lags behind small-area devices. Here, efficient large-area flexible single cells with power conversion efficiency (PCE) of 13.1% and 12.6% for areas of 6 and 10 cm2 , and flexible modules with a PCE of 13.2% (54 cm2 ) based on poly(ethylene terephthalate)/Ag grid/silver nanowires (AgNWs):zinc-chelated polyethylenimine (PEI-Zn) composite electrodes are reported. The solution-processed flexible transparent electrode of AgNWs:PEI-Zn shows low surface roughness and good optoelectronic and mechanical properties. PEI-Zn is conductive and optically transparent. It can adhere to and wrap the AgNWs under electrostatic interaction between the negatively charged surface (AgNWs) and positively charged protonated amine groups (in PEI-Zn). It wraps the AgNWs networks and fills the void space to achieve a smooth surface. The flexible electrode is validated in both flexible OSCs and flexible quantum-dots light-emitting diodes (QLEDs). Small-area flexible OSCs show a PCE of 16.1%, and flexible QLEDs show an external quantum efficiency of 13.3%. In the end, a flexible module is demonstrated to charge a mobile phone as a flexible power source (shown in Video S1, Supporting Information).

20.
Mater Sci Eng C Mater Biol Appl ; 116: 111197, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32806267

RESUMEN

Biodegradable Zn alloys containing Fe suffer from a common problem that FeZn13 second phase particles are coarse. This problem roots thermodynamically from the negligible solid solubility of Fe in Zn and priority of FeZn13 solidification over Zn. In this paper, bottom circulating water-cooled casting method is successfully developed to significantly refine FeZn13 particles in Zn-0.3Fe alloy, owing to its cooling speed about 8 times of that of conventional casting. The second phase refinement alleviates brittleness of the alloy, increases the ultimate tensile strength by about 62%, and decreases electrochemical corrosion rate (CR) by about 19%, but immersion CR by only about 4% due to barrier effect of corrosion products. Viability of human umbilical vein endothelial cells maintains at a high level over 95% in 25-100% extracts. A great potential is shown for improving comprehensive properties of biodegradable Zn alloys without changing its chemical compositions through such a physical method.


Asunto(s)
Aleaciones , Magnesio , Implantes Absorbibles , Materiales Biocompatibles , Corrosión , Humanos , Ensayo de Materiales , Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA