Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Plant Cell Physiol ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783418

RESUMEN

Brassinosteroids (BRs) are vital plant steroid hormones sensed at the cell surface by a membrane signaling complex comprising the receptor kinase BRI1 and a SERK-family co-receptor kinase. Activation of this complex lead to dissociation of the inhibitor protein BKI1 from the receptor and to differential phosphorylation of BZR1/BES1 transcription factors by the glycogen synthase kinase 3 protein BIN2. Many phosphoproteins of the BR signaling pathway, including BRI1, SERKs, BKI1 and BZR1/BES1 can associate with 14-3-3 proteins. In this study, we use quantitative ligand binding assays to define the minimal 14-3-3 binding sites in the N-terminal lobe of the BRI1 kinase domain, in BKI1, and in BZR1 from Arabidopsis thaliana. All three motifs require to be phosphorylated to specifically bind 14-3-3s with mid- to low micromolar affinity. BR signaling components display minimal isoform preference within the 14-3-3 non-ε subgroup. 14-3-3λ and 14-3-3ω isoform complex crystal structures reveal that BKI1 and BZR1 bind as canonical type II 14-3-3 linear motifs. Disruption of key amino acids in the phosphopeptide binding site through mutation impairs the interaction of 14-3-3λ with all three linear motifs. Notably, quadruple loss-of-function mutants from the non-ε group exhibit gain-of-function brassinosteroid signaling phenotypes, suggesting a role for 14-3-3 proteins as overall negative regulators of the BR pathway. Collectively, our work provides further mechanistic and genetic evidence for the regulatory role of 14-3-3 proteins at various stages of the brassinosteroid signaling cascade.

2.
Int J Mol Sci ; 23(15)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35955772

RESUMEN

Environmental metal pollution is a common problem threatening sustainable and safe crop production. Heavy metals (HMs) cause toxicity by targeting key molecules and life processes in plant cells. Plants counteract excess metals in the environment by enhancing defense responses, such as metal chelation, isolation to vacuoles, regulating metal intake through transporters, and strengthening antioxidant mechanisms. In recent years, microRNAs (miRNAs), as a small non-coding RNA, have become the central regulator of a variety of abiotic stresses, including HMs. With the introduction of the latest technologies such as next-generation sequencing (NGS), more and more miRNAs have been widely recognized in several plants due to their diverse roles. Metal-regulated miRNAs and their target genes are part of a complex regulatory network. Known miRNAs coordinate plant responses to metal stress through antioxidant functions, root growth, hormone signals, transcription factors (TF), and metal transporters. This article reviews the research progress of miRNAs in the stress response of plants to the accumulation of HMs, such as Cu, Cd, Hg, Cr, and Al, and the toxicity of heavy metal ions.


Asunto(s)
Metales Pesados , MicroARNs , Antioxidantes , Metales Pesados/toxicidad , MicroARNs/genética , Plantas/genética , Estrés Fisiológico/genética
3.
Physiol Plant ; 159(3): 340-353, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27787914

RESUMEN

Miscanthus is a vigorous perennial Gramineae genus grown throughout the world as a promising bioenergy crop and generally regarded as heavy metal tolerant due to its ability to absorb heavy metals. However, little is known about the mechanism for heavy metal tolerance in Miscanthus. In this study, two Miscanthus species (Miscanthus sacchariflorus and Miscanthus floridulus) exhibiting different cadmium (Cd) sensitivity were used to address the mechanisms of Cd tolerance. Under the same Cd stress, M. sacchariflorus showed higher Cd tolerance with better growth and lower Cd accumulation in both shoots and roots than M. floridulus. The malate (MA) content significantly increased in root exudates of M. sacchariflorus following Cd treatment while it was almost unchanged in M. floridulus. Cellular Cd analysis and flux data showed that exogenous MA application markedly restricted Cd influx and accumulation while an anion-channel inhibitor (phenylglyoxal) effectively blocked Cd-induced MA secretion and increased Cd influx in M. sacchariflorus, indicating that MA secretion could alleviate Cd toxicity by reducing Cd uptake. The genes of malate dehydrogenases (MsMDHs) and Al-activated malate transporter 1 (MsALMT1) in M. sacchariflorus were highly upregulated under Cd stress, compared with that in M. floridulus. The results indicate that Cd-induced MA synthesis and secretion efficiently alleviate Cd toxicity by reducing Cd influx in M. sacchariflorus.


Asunto(s)
Cadmio/toxicidad , Malatos/metabolismo , Poaceae/fisiología , Contaminantes del Suelo/toxicidad , Proteínas de Transporte de Anión/antagonistas & inhibidores , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Cadmio/metabolismo , Malato Deshidrogenasa/genética , Malato Deshidrogenasa/metabolismo , Malatos/farmacología , Fenilglioxal/farmacología , Proteínas de Plantas/antagonistas & inhibidores , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Poaceae/citología , Poaceae/efectos de los fármacos , Poaceae/genética , Contaminantes del Suelo/metabolismo , Estrés Fisiológico
4.
Ecotoxicol Environ Saf ; 141: 119-128, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28324818

RESUMEN

Malic acid (MA) plays an important role in the regulation of plant growth, stomatal aperture, nutrition elements homeostasis and toxic metals tolerance. However, little is known about the effects of exogenous MA on physiological and biochemical responses to toxic metals in plants. To measure the alleviation roles of exogenous MA against cadmium (Cd), we determined the effects of MA on plant growth, net photosynthetic rate (Pn), reactive oxygen species (ROS) accumulation and the activities of anti-oxidant enzymes in the leaves of Miscanthus sacchariflorus (M. sacchariflorus) under Cd stress. The Cd exposure alone significantly inhibited plant growth and Pn, but increased the accumulation of ROS even though the anti-oxidant enzymes were markedly activated in the leaves of M. sacchariflorus. Treatment with MA significantly enhanced plant growth and decreased Cd accumulation accompanied by increasing Pn under Cd stress as compared to Cd stress alone, especially when treatment with high concentration of MA (200µM) was used. In addition, Cd and MA indicated synergistic effects by further increasing the activities and genes expression of partial anti-oxidant enzymes, thus resulting in higher glutathione accumulation and reduction of ROS production. The results showed that application of MA alleviated Cd-induced phytotoxicity and oxidant damage through the regulation of both enzymatic and non-enzymatic anti-oxidants under Cd stress in M. sacchariflorus.


Asunto(s)
Cadmio/toxicidad , Malatos/farmacología , Fotosíntesis/efectos de los fármacos , Poaceae/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Contaminantes del Suelo/toxicidad , Antioxidantes/metabolismo , Glutatión/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/fisiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/fisiología , Poaceae/fisiología
5.
Planta ; 244(6): 1289-1302, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27534966

RESUMEN

MAIN CONCLUSION: The molecular mechanism of low Cd influxes and accumulation in Miscanthus sacchariflorus is revealed by RNA sequencing technique. Soil cadmium (Cd) pollution has posed a serious threat to our soil quality and food security as well as to human health. Some wild plants exhibit high tolerance to heavy metals stress. However, mechanisms of Cd tolerance of wild plants remain to be fully clarified. In this study, we found that two Miscanthus species, Miscanthus (M.) sacchariflorus and M. floridulus, showed different Cd-tolerant mechanisms. M. sacchariflorus accumulated less Cd in both root and leaf by limiting Cd uptake from root and showed superior Cd tolerance, while M. floridulus not only absorbs more Cd from root but also transports more Cd to shoot. To investigate the molecular mechanism of different Cd uptake patterns in the two Miscanthus species, we analyzed the transcriptome of M. sacchariflorus and identified transcriptional changes in response to Cd in roots by high-throughput RNA-sequencing technology. A total of 92,985 unigenes were obtained from M. sacchariflorus root cDNA samples. Based on the assembled de novo transcriptome, 681 DEGs which included 345 upregulated and 336 downregulated genes were detected between two libraries of untreated and Cd-treated roots. Gene ontology (GO) and pathway enrichment analysis revealed that upregulated DEGs under Cd stress are predominately involved in metabolic pathway, starch and sucrose and biosynthesis of secondary metabolites and metal ion transporters. Quantitative RT-PCR was employed to compare the expression levels of some metal transport genes in roots of two Miscanthus species, and the genes involved in Cd uptake from root and transfer from root to shoot were extremely different. The results not only enrich genomic resource but also help to better understand the molecular mechanisms of Cd accumulation and tolerance in wild plants.


Asunto(s)
Cadmio/metabolismo , Poaceae/metabolismo , Biodegradación Ambiental , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/fisiología , Cinética , Poaceae/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa
6.
Methods Mol Biol ; 2288: 73-88, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34270005

RESUMEN

In the context of plant regeneration, in vitro systems to produce embryos are frequently used. In many of these protocols, nonzygotic embryos are initiated that will produce shoot-like structures but may lack a primary root. By increasing the auxin-to-cytokinin ratio in the growth medium, roots are then regenerated in a second step. Therefore, in vitro systems might not or only partially execute a similar developmental program as employed during zygotic embryogenesis. There are, however, in vitro systems that can remarkably mimic zygotic embryogenesis such as Brassica microspore-derived embryos. In this case, the patterning process of these haploid embryos closely follows zygotic embryogenesis and all fundamental tissue types are generated in a rather similar manner. In this review, we discuss the most fundamental molecular events during early zygotic embryogenesis and hope that this brief summary can serve as a reference for studying and developing in vitro embryogenesis systems in the context of doubled haploid production.


Asunto(s)
Magnoliopsida/embriología , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Brassicaceae/embriología , Brassicaceae/genética , Brassicaceae/fisiología , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Ácidos Indolacéticos/metabolismo , Sistema de Señalización de MAP Quinasas , Magnoliopsida/genética , Magnoliopsida/fisiología , Modelos Biológicos , Biología Molecular/métodos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/fisiología , Regeneración/genética , Regeneración/fisiología , Nicho de Células Madre/genética , Nicho de Células Madre/fisiología , Cigoto
7.
Curr Biol ; 31(21): 4810-4816.e5, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34496220

RESUMEN

Embryogenesis of flowering plants is initiated by polarization of the zygote, a prerequisite for correct axis formation in the embryo. The daughter cells of the asymmetric zygote division form the pro-embryo and the mostly extra-embryonic suspensor.1 The suspensor plays a pivotal role in nutrient and hormone transport and rapid growth of the embryo.2,3 Zygote polarization is controlled by a MITOGEN-ACTIVATING PROTEIN (MAP) kinase signaling pathway including the MAPKK kinase (MAP3K) YODA (YDA)4 and the upstream membrane-associated proteins BRASINOSTEROID SIGNALING KINASE 1 (BSK1) and BSK2.5,6 Furthermore, suspensor development is controlled by cysteine-rich peptides of the EMBRYO SURROUNDING FACTOR 1 (ESF1) family.7 While they act genetically upstream of YDA, the corresponding receptor to perceive these potential ligands is unknown. In other developmental processes, such as stomata development, YDA activity is controlled by receptor kinases of the ERECTA family (ERf).8-12 While the receptor kinases upstream of BSK1/2 in the embryo have so far not been identified,1 YDA is in part activated by the sperm cell-derived BSK family member SHORT SUSPENSOR (SSP) that represents a naturally occurring, constitutively active variant of BSK1.5,13 It has been speculated that SSP might be a paternal component of a parental tug-of-war controlling resource allocation toward the embryo.2,13 Here, we show that in addition to SSP, the receptor kinase ERECTA plays a crucial role in zygote polarization as a maternally contributed part of the embryonic YDA pathway. We conclude that two independent parental contributions initiate zygote polarization and control embryo development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Quinasas Quinasa Quinasa PAM/metabolismo , Proteínas Quinasas/metabolismo , Semillas/metabolismo , Cigoto/metabolismo
8.
Curr Opin Plant Biol ; 53: 128-133, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31727540

RESUMEN

In the last two decades, work on auxin signaling has helped to understand many aspects of the fundamental process underlying the specification of tissue types in the plant embryo. However, the immediate steps after fertilization including the polarization of the zygote and the initial body axis formation remained poorly understood. Valuable insight into these enigmatic processes has been gained by studying fertilization in grasses. Recent technical advances in transcriptomics of developing embryos with high spatial and temporal resolution give an emerging picture of the rapid changes of the zygotic developmental program. Together with the use of live imaging of novel fluorescent marker lines, these data are now the basis of unraveling the very first steps of the embryonic patterning process.


Asunto(s)
Magnoliopsida , Cigoto , Desarrollo Embrionario , Semillas , Transducción de Señal
9.
Sci Total Environ ; 659: 1021-1031, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31096318

RESUMEN

Monitoring the effectiveness of Miscanthus sacchariflorus to meet the basic requirements for environmental remediation projects is an important step in determining its use as a productive bioenergy crop for phytoremediation. Conventional chemical methods for the determination of cadmium (Cd) contents involve time-consuming, monotonous and destructive procedures and are not suitable for high-throughput screening. In the present study, visible and near-infrared hyperspectral imaging technology combined with chemometric methods was used to assess the Cd concentrations in M. sacchariflorus. The total Cd concentrations in different plant tissues were measured using an inductively coupled plasma-mass spectrometer. Partial least-squares regression and least-squares support vector machine were implemented to estimate Cd contents from spectral reflectance. Successive projections algorithm and competitive adaptive reweighted sampling (CARS) methodology were used for selecting optimal wavelength. The CARS-partial least-squares regression model resulted in the most accurate predictions of Cd contents in M. sacchariflorus leaves, with a determination coefficient (R2) of 0.87 and a root mean square error (RMSE) value of 97.78 for the calibration set, and an R2 value of 0.91 and a RMSE value of 75.95 for the prediction set. The CARS-least-squares support vector machine model resulted in the most satisfactory predictions of Cd contents in roots, with R2 values of 0.95 (RMSE, 0.92 × 103) for the calibration set and 0.90 (RMSE, 1.64 × 103) for the prediction set. Finally, the Cd concentrations in different plant tissues were visualized on the prediction maps by predicted spectral features on each hyperspectral image pixel. Thus, visible and near-infrared imaging combined with chemometric methods produces a promising technique to evaluate M. sacchariflorus' Cd phytoremediation capability in high-throughput metal-contaminated field applications.


Asunto(s)
Cadmio/análisis , Monitoreo del Ambiente/métodos , Poaceae/química , Contaminantes del Suelo/análisis , Algoritmos , Biodegradación Ambiental , Restauración y Remediación Ambiental , Análisis de los Mínimos Cuadrados , Hojas de la Planta , Raíces de Plantas , Máquina de Vectores de Soporte
10.
Bioresour Technol ; 245(Pt A): 1008-1015, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28946202

RESUMEN

In this study an effective bacterial pretreatment method was developed to improve digestibility of Miscanthus. Seven new bacterial isolates, which showed excellent xylanase production ability using Miscanthus as carbon source, were used to perform the pretreatment experiments. After pretreatment, the hemicellulose content and crystallinity index of Miscanthus were decreased, while the reducing sugars released from Miscanthus were significantly increased by 30.8-87.8% after enzymatic hydrolysis. Bacillus sp. G0 was selected to optimize the pretreatment parameters via response surface methodology due to its high reducing sugars released from Miscanthus. According to the optimal model, the pretreatment parameters were set as citrate buffer/G0 fermentation broth ratio at 0.34, pretreatment time at 100h and Tween-20 concentration at 1.73%. The reducing sugars released from Miscanthus pretreated by optimal parameters were 305mgg-1 dry biomass. The results suggested our bacterial pretreatment approaches have great potential to increase digestibility of bioenergy crops.


Asunto(s)
Bacillus , Lignina , Poaceae , Biomasa , Hidrólisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA