Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Microbiol ; 24(3): 1308-1325, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34708512

RESUMEN

Terpios hoshinota is an aggressive, space-competing sponge that kills various stony corals. Outbreaks of this species have led to intense damage to coral reefs in many locations. Here, the first large-scale 16S rRNA gene survey across three oceans revealed that bacteria related to the taxa Prochloron, Endozoicomonas, SAR116, Ruegeria, and unclassified Proteobacteria were prevalent in T. hoshinota. A Prochloron-related bacterium was the most dominant and prevalent cyanobacterium in T. hoshinota. The complete genome of this uncultivated cyanobacterium and pigment analysis demonstrated that it has phycobiliproteins and lacks chlorophyll b, which is inconsistent with the definition of Prochloron. Furthermore, the cyanobacterium was phylogenetically distinct from Prochloron, strongly suggesting that it should be a sister taxon to Prochloron. Therefore, we proposed this symbiotic cyanobacterium as a novel species under the new genus Candidatus Paraprochloron terpiosi. Comparative genomic analyses revealed that 'Paraprochloron' and Prochloron exhibit distinct genomic features and DNA replication machinery. We also characterized the metabolic potentials of 'Paraprochloron terpiosi' in carbon and nitrogen cycling and propose a model for interactions between it and T. hoshinota. This study builds a foundation for the study of the T. hoshinota microbiome and paves the way for better understanding of ecosystems involving this coral-killing sponge.


Asunto(s)
Antozoos , Cianobacterias , Microbiota , Poríferos , Animales , Antozoos/microbiología , Arrecifes de Coral , Cianobacterias/metabolismo , Poríferos/genética , Prevalencia , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Simbiosis
2.
J Lipid Res ; 54(5): 1493-504, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23458847

RESUMEN

The aerobic degradation of steroids by bacteria has been studied in some detail. In contrast, only little is known about the anaerobic steroid catabolism. Steroidobacter denitrificans can utilize testosterone under both oxic and anoxic conditions. By conducting metabolomic investigations, we demonstrated that S. denitrificans adopts the 9,10-seco-pathway to degrade testosterone under oxic conditions. This pathway depends on the use of oxygenases for oxygenolytic ring fission. Conversely, the detected degradation intermediates under anoxic conditions suggest a novel, oxygenase-independent testosterone catabolic pathway, the 2,3-seco-pathway, which differs significantly from the aerobic route. In this anaerobic pathway, testosterone is first transformed to 1-dehydrotestosterone, which is then reduced to produce 1-testosterone followed by water addition to the C-1/C-2 double bond of 1-testosterone. Subsequently, the C-1 hydroxyl group is oxidized to produce 17-hydroxy-androstan-1,3-dione. The A-ring of this compound is cleaved by hydrolysis as evidenced by H2(18)O-incorporation experiments. Regardless of the growth conditions, testosterone is initially transformed to 1-dehydrotestosterone. This intermediate is a divergence point at which the downstream degradation pathway is governed by oxygen availability. Our results shed light into the previously unknown cleavage of the sterane ring structure without oxygen. We show that, under anoxic conditions, the microbial cleavage of steroidal core ring system begins at the A-ring.


Asunto(s)
Biodegradación Ambiental , Gammaproteobacteria/metabolismo , Esteroides/química , Testosterona/metabolismo , Aerobiosis , Anaerobiosis , Gammaproteobacteria/química , Humanos , Oxidación-Reducción , Oxígeno/metabolismo , Esteroides/metabolismo , Testosterona/química
3.
Microbiol Resour Announc ; 12(1): e0087722, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36541816

RESUMEN

Endozoicomonas euniceicola EF212T and Endozoicomonas gorgoniicola PS125T were isolated from soft corals (Eunicea fusca and Plexaura sp., respectively) and sequenced using a PacBio Sequel IIe sequencer. This is the first report of the genome sequences of culturable octocoral-isolated Endozoicomonas strains.

4.
mSystems ; 7(4): e0035922, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35703535

RESUMEN

Bacteria in the coral microbiome play a crucial role in determining coral health and fitness, and the coral host often restructures its microbiome composition in response to external factors. An important but often neglected factor determining this microbiome restructuring is the ability of microbiome members to respond to changes in the environment. To address this issue, we examined how the microbiome structure of Acropora muricata corals changed over 9 months following a reciprocal transplant experiment. Using a combination of metabarcoding, genomics, and comparative genomics approaches, we found that coral colonies separated by a small distance harbored different dominant Endozoicomonas-related phylotypes belonging to two different species, including a novel species, "Candidatus Endozoicomonas penghunesis" 4G, whose chromosome-level (complete) genome was also sequenced in this study. Furthermore, the two dominant Endozoicomonas species had different potentials to scavenge reactive oxygen species, suggesting potential differences in responding to the environment. Differential capabilities of dominant members of the microbiome to respond to environmental change can (i) provide distinct advantages or disadvantages to coral hosts when subjected to changing environmental conditions and (ii) have positive or negative implications for future reefs. IMPORTANCE The coral microbiome has been known to play a crucial role in host health. In recent years, we have known that the coral microbiome changes in response to external stressors and that coral hosts structure their microbiome in a host-specific manner. However, an important internal factor, the ability of microbiome members to respond to change, has been often neglected. In this study, we combine metabarcoding, culturing, and genomics to delineate the differential ability of two dominant Endozoicomonas species, including a novel "Ca. Endozoicomonas penghunesis" 4G, to respond to change in the environment following a reciprocal transplant experiment.


Asunto(s)
Antozoos , Gammaproteobacteria , Microbiota , Animales , Antozoos/genética , Bacterias/genética , Microbiota/genética , Genómica , Gammaproteobacteria/genética
5.
Sci Adv ; 8(27): eabo2431, 2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35857470

RESUMEN

Bacteria commonly form aggregates in a range of coral species [termed coral-associated microbial aggregates (CAMAs)], although these structures remain poorly characterized despite extensive efforts studying the coral microbiome. Here, we comprehensively characterize CAMAs associated with Stylophora pistillata and quantify their cell abundance. Our analysis reveals that multiple Endozoicomonas phylotypes coexist inside a single CAMA. Nanoscale secondary ion mass spectrometry imaging revealed that the Endozoicomonas cells were enriched with phosphorus, with the elemental compositions of CAMAs different from coral tissues and endosymbiotic Symbiodiniaceae, highlighting a role in sequestering and cycling phosphate between coral holobiont partners. Consensus metagenome-assembled genomes of the two dominant Endozoicomonas phylotypes confirmed their metabolic potential for polyphosphate accumulation along with genomic signatures including type VI secretion systems allowing host association. Our findings provide unprecedented insights into Endozoicomonas-dominated CAMAs and the first direct physiological and genomic linked evidence of their biological role in the coral holobiont.

6.
Microb Genom ; 7(5)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33952388

RESUMEN

Endolithic microbial symbionts in the coral skeleton may play a pivotal role in maintaining coral health. However, compared to aerobic micro-organisms, research on the roles of endolithic anaerobic micro-organisms and microbe-microbe interactions in the coral skeleton are still in their infancy. In our previous study, we showed that a group of coral-associated Prosthecochloris (CAP), a genus of anaerobic green sulphur bacteria, was dominant in the skeleton of the coral Isopora palifera. Though CAP is diverse, the 16S rRNA phylogeny presents it as a distinct clade separate from other free-living Prosthecochloris. In this study, we build on previous research and further characterize the genomic and metabolic traits of CAP by recovering two new high-quality CAP genomes - Candidatus Prosthecochloris isoporae and Candidatus Prosthecochloris sp. N1 - from the coral I. palifera endolithic cultures. Genomic analysis revealed that these two CAP genomes have high genomic similarities compared with other Prosthecochloris and harbour several CAP-unique genes. Interestingly, different CAP species harbour various pigment synthesis and sulphur metabolism genes, indicating that individual CAPs can adapt to a diversity of coral microenvironments. A novel high-quality genome of sulfate-reducing bacterium (SRB)- Candidatus Halodesulfovibrio lyudaonia - was also recovered from the same culture. The fact that CAP and various SRB co-exist in coral endolithic cultures and coral skeleton highlights the importance of SRB in the coral endolithic community. Based on functional genomic analysis of Ca. P. sp. N1, Ca. P. isoporae and Ca. H. lyudaonia, we also propose a syntrophic relationship between the SRB and CAP in the coral skeleton.


Asunto(s)
Antozoos/microbiología , Chlorobi/clasificación , Chlorobi/genética , Chlorobi/metabolismo , Genómica , Filogenia , Sulfatos/metabolismo , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , ADN Bacteriano/genética , Desulfovibrionaceae , Genoma , Metagenoma , ARN Ribosómico 16S/genética
7.
PLoS One ; 12(8): e0183663, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28859111

RESUMEN

Environmental impacts can alter relationships between a coral and its symbiotic microbial community. Furthermore, changes in the microbial community associated with increased seawater temperatures can cause opportunistic infections, coral disease and death. Interactions between soft corals and their associated microbes are not well understood. The species Scleronephthya gracillimum is distributed in tropical to temperate zones in coral assemblages along the Kuroshio Current region. In this study we collected S. gracillimum from various sites at different latitudes, and compared composition of their bacterial communities using Next Generation Sequencing. Coral samples from six geographically distinct areas (two sites each in Taiwan, Japan, and Korea) had considerable variation in their associated bacterial communities and diversity. Endozoicimonaceae was the dominant group in corals from Korea and Japan, whereas Mycoplasma was dominant in corals from Taiwan corals. Interestingly, the latter corals had lower relative abundance of Endozoicimonaceae, but greater diversity. These biogeographic differences in bacterial composition may have been due to varying environmental conditions among study locations, or because of host responses to prevailing environmental conditions. This study provided a baseline for future studies of soft coral microbiomes, and assessment of functions of host metabolites and soft coral holobionts.


Asunto(s)
Antozoos/genética , Antozoos/microbiología , Mycoplasma/genética , Simbiosis/genética , Animales , Antozoos/crecimiento & desarrollo , Bacterias/clasificación , Bacterias/genética , Monitoreo del Ambiente , Geografía , Secuenciación de Nucleótidos de Alto Rendimiento , Japón , Mycoplasma/aislamiento & purificación , ARN Ribosómico 16S/genética , República de Corea , Agua de Mar/microbiología , Taiwán
8.
Sci Rep ; 7(1): 14933, 2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-29097716

RESUMEN

Seasonal variation in temperature fluctuations may provide corals and their algal symbionts varying abilities to acclimate to changing temperatures. We hypothesized that different temperature ranges between seasons may promote temperature-tolerance of corals, which would increase stability of a bacterial community following thermal stress. Acropora muricata coral colonies were collected in summer and winter (water temperatures were 23.4-30.2 and 12.1-23.1 °C, respectively) from the Penghu Archipelago in Taiwan, then exposed to 6 temperature treatments (10-33 °C). Changes in coral-associated bacteria were determined after 12, 24, and 48 h. Based on 16S rRNA gene amplicons and Illumina sequencing, bacterial communities differed between seasons and treatments altered the dominant bacteria. Cold stress caused slower shifts in the bacterial community in winter than in summer, whereas a more rapid shift occurred under heat stress in both seasons. Results supported our hypothesis that bacterial community composition of corals in winter are more stable in cold temperatures but changed rapidly in hot temperatures, with opposite results for the bacterial communities in summer. We infer that the thermal tolerance ranges of coral-associated bacteria, with a stable community composition, are associated with their short-term (3 mo) seawater thermal history. Therefore, seasonal acclimation may increase tolerance of coral-associated bacteria to temperature fluctuations.


Asunto(s)
Antozoos/microbiología , Antozoos/fisiología , Bacterias/aislamiento & purificación , Fenómenos Fisiológicos Bacterianos , Simbiosis , Aclimatación , Animales , Bacterias/genética , Respuesta al Choque por Frío , Respuesta al Choque Térmico , ARN Ribosómico 16S/genética , Estaciones del Año , Estrés Fisiológico , Temperatura , Termotolerancia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA