Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 150(3): 590-605, 2012 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-22863011

RESUMEN

Endothelium in embryonic hematopoietic tissues generates hematopoietic stem/progenitor cells; however, it is unknown how its unique potential is specified. We show that transcription factor Scl/Tal1 is essential for both establishing the hematopoietic transcriptional program in hemogenic endothelium and preventing its misspecification to a cardiomyogenic fate. Scl(-/-) embryos activated a cardiac transcriptional program in yolk sac endothelium, leading to the emergence of CD31+Pdgfrα+ cardiogenic precursors that generated spontaneously beating cardiomyocytes. Ectopic cardiogenesis was also observed in Scl(-/-) hearts, where the disorganized endocardium precociously differentiated into cardiomyocytes. Induction of mosaic deletion of Scl in Scl(fl/fl)Rosa26Cre-ER(T2) embryos revealed a cell-intrinsic, temporal requirement for Scl to prevent cardiomyogenesis from endothelium. Scl(-/-) endothelium also upregulated the expression of Wnt antagonists, which promoted rapid cardiomyocyte differentiation of ectopic cardiogenic cells. These results reveal unexpected plasticity in embryonic endothelium such that loss of a single master regulator can induce ectopic cardiomyogenesis from endothelial cells.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Endotelio Vascular/embriología , Corazón/embriología , Proteínas Proto-Oncogénicas/metabolismo , Animales , Cadherinas/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Hemangioblastos , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Proteínas con Homeodominio LIM/metabolismo , Mesodermo/metabolismo , Ratones , Miocitos Cardíacos/citología , Placenta/irrigación sanguínea , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Embarazo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Proteína 1 de la Leucemia Linfocítica T Aguda , Factores de Transcripción/metabolismo , Saco Vitelino/irrigación sanguínea
2.
Genes Dev ; 28(22): 2547-63, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25403183

RESUMEN

Control of Gli function by Suppressor of Fused (Sufu), a major negative regulator, is a key step in mammalian Hedgehog (Hh) signaling, but how this is achieved in the nucleus is unknown. We found that Hh signaling results in reduced Sufu protein levels and Sufu dissociation from Gli proteins in the nucleus, highlighting critical functions of Sufu in the nucleus. Through a proteomic approach, we identified several Sufu-interacting proteins, including p66ß (a member of the NuRD [nucleosome remodeling and histone deacetylase] repressor complex) and Mycbp (a Myc-binding protein). p66ß negatively and Mycbp positively regulate Hh signaling in cell-based assays and zebrafish. They function downstream from the membrane receptors, Patched and Smoothened, and the primary cilium. Sufu, p66ß, Mycbp, and Gli are also detected on the promoters of Hh targets in a dynamic manner. Our results support a new model of Hh signaling in the nucleus. Sufu recruits p66ß to block Gli-mediated Hh target gene expression. Meanwhile, Mycbp forms a complex with Gli and Sufu without Hh stimulation but remains inactive. Hh pathway activation leads to dissociation of Sufu/p66ß from Gli, enabling Mycbp to promote Gli protein activity and Hh target gene expression. These studies provide novel insight into how Sufu controls Hh signaling in the nucleus.


Asunto(s)
Regulación de la Expresión Génica , Proteínas Hedgehog/fisiología , Proteínas Represoras/metabolismo , alfa-Amilasas Salivales/metabolismo , Transducción de Señal , Animales , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Proteínas Hedgehog/metabolismo , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Mutación , Células 3T3 NIH , Unión Proteica , Proteómica , Proteínas Represoras/genética , alfa-Amilasas Salivales/genética , Pez Cebra/genética , Proteína con Dedos de Zinc GLI1
3.
Dev Biol ; 421(2): 139-148, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27940156

RESUMEN

Tbx20 is a T-box transcription factor that plays essential roles in the development and maintenance of the heart. Although it is expressed by cardiac progenitors in all species examined, an involvement of Tbx20 in cardiac progenitor formation in vertebrates has not been previously described. Here we report the identification of a zebrafish tbx20 mutation that results in an inactive, truncated protein lacking any functional domains. The cardiac progenitor population is strongly diminished in this mutant, leading to the formation of a small, stretched-out heart. We found that overexpression of Tbx20 results in an enlarged heart with significantly more cardiomyocytes. Interestingly, this increase in cell number is caused by both enhanced cardiac progenitor cell formation and the proliferation of differentiated cardiomyocytes, and is dependent upon the activity of Tbx20's T-box and transcription activation domains. Together, our findings highlight a previously unappreciated role for Tbx20 in promoting cardiac progenitor formation in vertebrates and reveal a novel function for its activation domain in cardiac cell proliferation during embryogenesis.


Asunto(s)
Miocitos Cardíacos/citología , Organogénesis , Células Madre/citología , Proteínas de Dominio T Box/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Apoptosis/genética , Secuencia de Bases , Recuento de Células , Proliferación Celular , Clonación Molecular , Codón sin Sentido/genética , ADN/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mutación/genética , Miocardio/citología , Miocitos Cardíacos/metabolismo , Organogénesis/genética , Unión Proteica/genética , Dominios Proteicos , Células Madre/metabolismo , Proteínas de Dominio T Box/química , Proteínas de Dominio T Box/genética , Activación Transcripcional/genética , Pez Cebra/genética , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genética
4.
J Biol Chem ; 291(52): 26636-26646, 2016 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-27815504

RESUMEN

Calmodulin (CaM) is a Ca2+ binding protein modulating multiple targets, several of which are associated with cardiac pathophysiology. Recently, CaM mutations were linked to heart arrhythmia. CaM is crucial for cell growth and viability, yet the effect of the arrhythmogenic CaM mutations on cell viability, as well as heart rhythm, remains unknown, and only a few targets with relevance for heart physiology have been analyzed for their response to mutant CaM. We show that the arrhythmia-associated CaM mutants support growth and viability of DT40 cells in the absence of WT CaM except for the long QT syndrome mutant CaM D129G. Of the six CaM mutants tested (N53I, F89L, D95V, N97S, D129G, and F141L), three showed a decreased activation of Ca2+/CaM-dependent kinase II, most prominently the D129G CaM mutation, which was incapable of stimulating Thr286 autophosphorylation. Furthermore, the CaM D129G mutation led to bradycardia in zebrafish and an arrhythmic phenotype in a subset of the analyzed zebrafish.


Asunto(s)
Arritmias Cardíacas/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calmodulina/genética , Proliferación Celular/genética , Mutación/genética , Taquicardia Ventricular/patología , Animales , Calcio/metabolismo , Calmodulina/química , Calmodulina/metabolismo , Células Cultivadas , Humanos , Síndrome de QT Prolongado/etiología , Síndrome de QT Prolongado/metabolismo , Síndrome de QT Prolongado/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fosforilación , Conformación Proteica , Taquicardia Ventricular/etiología , Taquicardia Ventricular/metabolismo , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo
5.
Dev Biol ; 404(2): 103-12, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26086691

RESUMEN

Cardiac neural crest cells are essential for outflow tract remodeling in animals with divided systemic and pulmonary circulatory systems, but their contributions to cardiac development in animals with a single-loop circulatory system are less clear. Here we genetically labeled neural crest cells and examined their contribution to the developing zebrafish heart. We identified two populations of neural crest cells that contribute to distinct compartments of zebrafish cardiovascular system at different developmental stages. A stream of neural crest cells migrating through pharyngeal arches 1 and 2 integrates into the myocardium of the primitive heart tube between 24 and 30 h post fertilization and gives rise to cardiomyocytes. A second wave of neural crest cells migrating along aortic arch 6 envelops the endothelium of the ventral aorta and invades the bulbus arteriosus after three days of development. Interestingly, while inhibition of FGF signaling has no effect on the integration of neural crest cells to the primitive heart tube, it prevents these cells from contributing to the outflow tract, demonstrating disparate responses of neural crest cells to FGF signaling. Furthermore, neural crest ablation in zebrafish leads to multiple cardiac defects, including reduced heart rate, defective myocardial maturation and a failure to recruit progenitor cells from the second heart field. These findings add to our understanding of the contribution of neural crest cells to the developing heart and provide insights into the requirement for these cells in cardiac maturation.


Asunto(s)
Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Cardiopatías Congénitas/embriología , Corazón/embriología , Cresta Neural/citología , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Aorta/citología , Diferenciación Celular , Movimiento Celular , Vasos Coronarios/citología , Vasos Coronarios/embriología , Miocitos Cardíacos/citología
6.
J Biol Chem ; 289(33): 23200-23208, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24962575

RESUMEN

Oxidative stress has been implicated in cardiac arrhythmia, although a causal relationship remains undefined. We have recently demonstrated a marked up-regulation of NADPH oxidase isoform 4 (NOX4) in patients with atrial fibrillation, which is accompanied by overproduction of reactive oxygen species (ROS). In this study, we investigated the impact on the cardiac phenotype of NOX4 overexpression in zebrafish. One-cell stage embryos were injected with NOX4 RNA prior to video recording of a GFP-labeled (myl7:GFP zebrafish line) beating heart in real time at 24-31 h post-fertilization. Intriguingly, NOX4 embryos developed cardiac arrhythmia that is characterized by irregular heartbeats. When quantitatively analyzed by an established LQ-1 program, the NOX4 embryos displayed much more variable beat-to-beat intervals (mean S.D. of beat-to-beat intervals was 0.027 s/beat in control embryos versus 0.038 s/beat in NOX4 embryos). Both the phenotype and the increased ROS in NOX4 embryos were attenuated by NOX4 morpholino co-injection, treatments of the embryos with polyethylene glycol-conjugated superoxide dismutase, or NOX4 inhibitors fulvene-5, 6-dimethylamino-fulvene, and proton sponge blue. Injection of NOX4-P437H mutant RNA had no effect on the cardiac phenotype or ROS production. In addition, phosphorylation of calcium/calmodulin-dependent protein kinase II was increased in NOX4 embryos but diminished by polyethylene glycol-conjugated superoxide dismutase, whereas its inhibitor KN93 or AIP abolished the arrhythmic phenotype. Taken together, our data for the first time uncover a novel pathway that underlies the development of cardiac arrhythmia, namely NOX4 activation, subsequent NOX4-specific NADPH-driven ROS production, and redox-sensitive CaMKII activation. These findings may ultimately lead to novel therapeutics targeting cardiac arrhythmia.


Asunto(s)
Arritmias Cardíacas/enzimología , Contracción Miocárdica , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente/embriología , Animales Modificados Genéticamente/genética , Arritmias Cardíacas/embriología , Arritmias Cardíacas/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Modelos Animales de Enfermedad , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Inhibidores Enzimáticos/farmacología , NADPH Oxidasas/genética , Fenotipo , Pez Cebra/genética , Proteínas de Pez Cebra/genética
7.
J Biol Chem ; 289(18): 12566-77, 2014 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-24627492

RESUMEN

In recent years, there has been a vast increase in structural and functional understanding of VDAC1, but VDAC2 and -3 have been understudied despite having many unique phenotypes. One reason for the paucity of structural and biochemical characterization of the VDAC2 and -3 isoforms stems from the inability of obtaining purified, functional protein. Here we demonstrate the expression, isolation, and basic characterization of zebrafish VDAC2 (zfVDAC2). Further, we resolved the structure of zfVDAC2 at 2.8 Šresolution, revealing a crystallographic dimer. The dimer orientation was confirmed in solution by double electron-electron resonance spectroscopy and by cross-linking experiments disclosing a dimer population of ∼20% in lauryldimethine amine oxide detergent micelles, whereas in lipidic bicelles a higher population of dimeric and higher order oligomers species were observed. The present study allows for a more accurate structural comparison between VDAC2 and its better-studied counterpart VDAC1.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/métodos , Multimerización de Proteína , Canal Aniónico 2 Dependiente del Voltaje/química , Proteínas de Pez Cebra/química , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Conductividad Eléctrica , Electroforesis en Gel de Poliacrilamida , Membrana Dobles de Lípidos/química , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Conformación Proteica , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Electricidad Estática , Canal Aniónico 2 Dependiente del Voltaje/genética , Canal Aniónico 2 Dependiente del Voltaje/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
8.
Arterioscler Thromb Vasc Biol ; 34(10): 2268-75, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25147335

RESUMEN

OBJECTIVE: Fluid shear stress intimately regulates vasculogenesis and endothelial homeostasis. The canonical Wnt/ß-catenin signaling pathways play an important role in differentiation and proliferation. In this study, we investigated whether shear stress activated angiopoietin-2 (Ang-2) via the canonical Wnt signaling pathway with an implication in vascular endothelial repair. APPROACH AND RESULTS: Oscillatory shear stress upregulated both TOPflash Wnt reporter activities and the expression of Ang-2 mRNA and protein in human aortic endothelial cells accompanied by an increase in nuclear ß-catenin intensity. Oscillatory shear stress-induced Ang-2 and Axin-2 mRNA expression was downregulated in the presence of a Wnt inhibitor, IWR-1, but was upregulated in the presence of a Wnt agonist, LiCl. Ang-2 expression was further downregulated in response to a Wnt signaling inhibitor, DKK-1, but was upregulated by Wnt agonist Wnt3a. Both DKK-1 and Ang-2 siRNA inhibited endothelial cell migration and tube formation, which were rescued by human recombinant Ang-2. Both Ang-2 and Axin-2 mRNA downregulation was recapitulated in the heat-shock-inducible transgenic Tg(hsp70l:dkk1-GFP) zebrafish embryos at 72 hours post fertilization. Ang-2 morpholino injection of Tg (kdrl:GFP) fish impaired subintestinal vessel formation at 72 hours post fertilization, which was rescued by zebrafish Ang-2 mRNA coinjection. Inhibition of Wnt signaling with IWR-1 also downregulated Ang-2 and Axin-2 expression and impaired vascular repair after tail amputation, which was rescued by zebrafish Ang-2 mRNA injection. CONCLUSIONS: Shear stress activated Ang-2 via canonical Wnt signaling in vascular endothelial cells, and Wnt-Ang-2 signaling is recapitulated in zebrafish embryos with a translational implication in vascular development and repair.


Asunto(s)
Angiopoyetina 2/metabolismo , Mecanotransducción Celular , Neovascularización Fisiológica , Vía de Señalización Wnt , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Angiopoyetina 2/genética , Animales , Animales Modificados Genéticamente , Proteína Axina/genética , Proteína Axina/metabolismo , Movimiento Celular , Proliferación Celular , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Mecanotransducción Celular/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Interferencia de ARN , ARN Mensajero/metabolismo , Estrés Fisiológico , Factores de Tiempo , Transfección , Vía de Señalización Wnt/efectos de los fármacos , Proteína Wnt3A/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
9.
Nature ; 457(7226): 205-9, 2009 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-19043402

RESUMEN

In teleosts, proper balance and hearing depend on mechanical sensors in the inner ear. These sensors include actin-based microvilli and microtubule-based cilia that extend from the surface of sensory hair cells and attach to biomineralized 'ear stones' (or otoliths). Otolith number, size and placement are under strict developmental control, but the mechanisms that ensure otolith assembly atop specific cells of the sensory epithelium are unclear. Here we demonstrate that cilia motility is required for normal otolith assembly and localization. Using in vivo video microscopy, we show that motile tether cilia at opposite poles of the otic vesicle create fluid vortices that attract otolith precursor particles, thereby biasing an otherwise random distribution to direct localized otolith seeding on tether cilia. Independent knockdown of subunits for the dynein regulatory complex and outer-arm dynein disrupt cilia motility, leading to defective otolith biogenesis. These results demonstrate a requirement for the dynein regulatory complex in vertebrates and show that cilia-driven flow is a key epigenetic factor in controlling otolith biomineralization.


Asunto(s)
Cilios/fisiología , Dineínas/metabolismo , Proteínas de Microtúbulos/metabolismo , Movimiento , Membrana Otolítica/citología , Membrana Otolítica/embriología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Cilios/metabolismo , Dineínas/química , Dineínas/deficiencia , Dineínas/genética , Epigénesis Genética , Humanos , Microscopía por Video , Proteínas de Microtúbulos/química , Proteínas de Microtúbulos/deficiencia , Proteínas de Microtúbulos/genética , Datos de Secuencia Molecular , Complejos Multiproteicos/deficiencia , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Membrana Otolítica/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
10.
Nature ; 459(7243): 98-102, 2009 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-19305393

RESUMEN

Hedgehog (Hh) signalling is essential for several aspects of embryogenesis. In Drosophila, Hh transduction is mediated by a cytoplasmic signalling complex that includes the putative serine-threonine kinase Fused (Fu) and the kinesin Costal 2 (Cos2, also known as Cos), yet Fu does not have a conserved role in Hh signalling in mammals. Mouse Fu (also known as Stk36) mutants are viable and seem to respond normally to Hh signalling. Here we show that mouse Fu is essential for construction of the central pair apparatus of motile, 9+2 cilia and offers a new model of human primary ciliary dyskinesia. We found that mouse Fu physically interacts with Kif27, a mammalian Cos2 orthologue, and linked Fu to known structural components of the central pair apparatus, providing evidence for the first regulatory component involved in central pair construction. We also demonstrated that zebrafish Fu is required both for Hh signalling and cilia biogenesis in Kupffer's vesicle. Mouse Fu rescued both Hh-dependent and -independent defects in zebrafish. Our results delineate a new pathway for central pair apparatus assembly, identify common regulators of Hh signalling and motile ciliogenesis, and provide insights into the evolution of the Hh cascade.


Asunto(s)
Cilios/fisiología , Proteínas Hedgehog/fisiología , Proteínas Represoras/metabolismo , Transducción de Señal/fisiología , Animales , Proteína Axina , Cinesinas/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Fenotipo , Proteínas Represoras/genética , Pez Cebra/embriología
11.
Development ; 138(6): 1173-81, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21307094

RESUMEN

Arterial and venous endothelial cells exhibit distinct molecular characteristics at early developmental stages. These lineage-specific molecular programs are instructive to the development of distinct vascular architectures and physiological conditions of arteries and veins, but their roles in angiogenesis remain unexplored. Here, we show that the caudal vein plexus in zebrafish forms by endothelial cell sprouting, migration and anastomosis, providing a venous-specific angiogenesis model. Using this model, we have identified a novel compound, aplexone, which effectively suppresses venous, but not arterial, angiogenesis. Multiple lines of evidence indicate that aplexone differentially regulates arteriovenous angiogenesis by targeting the HMG-CoA reductase (HMGCR) pathway. Treatment with aplexone affects the transcription of enzymes in the HMGCR pathway and reduces cellular cholesterol levels. Injecting mevalonate, a metabolic product of HMGCR, reverses the inhibitory effect of aplexone on venous angiogenesis. In addition, aplexone treatment inhibits protein prenylation and blocking the activity of geranylgeranyl transferase induces a venous angiogenesis phenotype resembling that observed in aplexone-treated embryos. Furthermore, endothelial cells of venous origin have higher levels of proteins requiring geranylgeranylation than arterial endothelial cells and inhibiting the activity of Rac or Rho kinase effectively reduces the migration of venous, but not arterial, endothelial cells. Taken together, our findings indicate that angiogenesis is differentially regulated by the HMGCR pathway via an arteriovenous-dependent requirement for protein prenylation in zebrafish and human endothelial cells.


Asunto(s)
Arterias/efectos de los fármacos , Hidroximetilglutaril-CoA Reductasas/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Sulfonamidas/farmacología , Venas/efectos de los fármacos , Inhibidores de la Angiogénesis/farmacología , Animales , Animales Modificados Genéticamente , Arterias/fisiología , Células Cultivadas , Sistemas de Liberación de Medicamentos , Evaluación Preclínica de Medicamentos , Embrión no Mamífero , Humanos , Terapia Molecular Dirigida , Neovascularización Fisiológica/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Especificidad por Sustrato/efectos de los fármacos , Venas/fisiología , Pez Cebra/embriología , Pez Cebra/metabolismo , Pez Cebra/fisiología
12.
Dev Dyn ; 242(9): 1101-9, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23723158

RESUMEN

BACKGROUND: PPM1G is a nuclear localized serine/threonine phosphatase implicated to be a regulator of chromatin remodeling, mRNA splicing, and DNA damage. However, its in vivo function is unknown. RESULTS: Here we show that ppm1g expression is highly enriched in the central nervous system during mouse and zebrafish development. ppm1g(-/-) mice were embryonic lethal with incomplete penetrance after E12.5. Rostral defects, including neural tube and craniofacial defects were observed in ppm1g(-/-) embryos associated with increased cell death in the neural epithelium. In zebrafish, loss of ppm1g also led to neural defects with aberrant neural marker gene expression. Primary fibroblasts from ppm1g(-/-) embryos failed to grow without immortalization while immortalized ppm1g(-/-) fibroblasts had increased cell death upon oxidative and genotoxic stress when compared to wild type fibroblasts. CONCLUSIONS: Our in vivo and in vitro studies revealed a critical role for PPM1G in normal development and cell survival.


Asunto(s)
Proteínas del Tejido Nervioso/biosíntesis , Tubo Neural/embriología , Neurogénesis/fisiología , Fosfoproteínas Fosfatasas/biosíntesis , Proteínas de Pez Cebra/biosíntesis , Pez Cebra/embriología , Animales , Línea Celular Transformada , Supervivencia Celular/fisiología , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Tubo Neural/citología , Tubo Neural/enzimología , Fosfoproteínas Fosfatasas/genética , Proteína Fosfatasa 2C , Pez Cebra/genética , Proteínas de Pez Cebra/genética
13.
Dev Biol ; 362(2): 263-70, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22182522

RESUMEN

Na(+),K(+) ATPase pumps Na(+) out of and K(+) into the cytosol, maintaining a resting potential that is essential for the function of excitable tissues like cardiac muscle. In addition to its well-characterized physiological role in the heart, Na(+),K(+) ATPase also regulates the morphogenesis of the embryonic zebrafish heart via an as yet unknown mechanism. Here, we describe a novel non-cell autonomous function of Na(+),K(+) ATPase/Atp1a1 in the elongation of the zebrafish heart tube. Embryos lacking Atp1a1 function exhibit abnormal migration behavior of cardiac precursors, defects in the elongation of the heart tube, and a severe reduction in ECM/Fibronectin deposition around the myocardium, despite the presence of normal cell polarity and junctions in the myocardial epithelium prior to the timeframe of heart tube elongation. Interestingly, we found that Atp1a1 is not present in the myocardium at the time when cardiac morphogenesis defects first become apparent, but is expressed in an extra-embryonic tissue, the yolk syncytial layer (YSL), at earlier stages. Knockdown of Atp1a1 activity specifically in the YSL using morpholino oligonucleotides produced heart tube elongation defects like those found in atp1a1 mutants, indicating that Atp1a1 function in the YSL is necessary for heart tube elongation. Furthermore, atp1a1 expression in the YSL was regulated by the homeobox transcription factor mxtx1. Together, these data reveal a new non-cell autonomous role for Atp1a1 in cardiac morphogenesis and establish Na(+),K(+) ATPase as a major player in the genetic pathway by which the YSL regulates embryonic ECM deposition.


Asunto(s)
Proteínas del Huevo/metabolismo , Membranas Extraembrionarias/metabolismo , Corazón/embriología , Morfogénesis/fisiología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Western Blotting , Técnicas de Silenciamiento del Gen , Proteínas de Homeodominio/metabolismo , Hibridación in Situ , Microscopía Confocal , Morfolinos/genética , Imagen de Lapso de Tiempo
14.
Am J Physiol Heart Circ Physiol ; 305(11): H1624-38, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24077883

RESUMEN

Myocyte hypertrophy antecedent to heart failure involves changes in global gene expression, although the preceding mechanisms to coordinate DNA accessibility on a genomic scale are unknown. Chromatin-associated proteins alter chromatin structure by changing their association with DNA, thereby altering the gene expression profile. Little is known about the global changes in chromatin subproteomes that accompany heart failure, and the mechanisms by which these proteins alter chromatin structure. The present study tests the fundamental hypothesis that cardiac growth and plasticity in the setting of disease recapitulates conserved developmental chromatin remodeling events. We used quantitative proteomics to identify chromatin-associated proteins extracted via detergent and to quantify changes in their abundance during disease. Our study identified 321 proteins in this subproteome, demonstrating it to have modest conservation (37%) with that revealed using strong acid. Of these proteins, 176 exhibited altered expression during cardiac hypertrophy and failure; we conducted extensive functional characterization of one of these proteins, Nucleolin. Morpholino-based knockdown of nucleolin nearly abolished protein expression but surprisingly had little impact on gross morphological development. However, hearts of fish lacking Nucleolin displayed severe developmental impairment, abnormal chamber patterning and functional deficits, ostensibly due to defects in cardiac looping and myocyte differentiation. The mechanisms underlying these defects involve perturbed bone morphogenetic protein 4 expression, decreased rRNA transcription, and a shift to more heterochromatic chromatin. This study reports the quantitative analysis of a new chromatin subproteome in the normal and diseased mouse heart. Validation studies in the complementary model system of zebrafish examine the role of Nucleolin to orchestrate genomic reprogramming events shared between development and disease.


Asunto(s)
Cardiomegalia/metabolismo , Cromatina/metabolismo , Insuficiencia Cardíaca/metabolismo , Miocitos Cardíacos/metabolismo , Fosfoproteínas/metabolismo , Proteómica , Proteínas de Unión al ARN/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Proteína Morfogenética Ósea 4/metabolismo , Cardiomegalia/genética , Cardiomegalia/patología , Células Cultivadas , Ensamble y Desensamble de Cromatina , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Técnicas de Sustitución del Gen , Técnicas de Silenciamiento del Gen , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Miocitos Cardíacos/patología , Fosfoproteínas/genética , Proteómica/métodos , ARN Ribosómico/metabolismo , Proteínas de Unión al ARN/genética , Ratas , Transducción de Señal , Factores de Tiempo , Transcripción Genética , Pez Cebra , Proteínas de Pez Cebra/genética , Nucleolina
15.
J Cardiovasc Dev Dis ; 10(5)2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37233188

RESUMEN

The PAF1 complex component Rtf1 is an RNA Polymerase II-interacting transcription regulatory protein that promotes transcription elongation and the co-transcriptional monoubiquitination of histone 2B. Rtf1 plays an essential role in the specification of cardiac progenitors from the lateral plate mesoderm during early embryogenesis, but its requirement in mature cardiac cells is unknown. Here, we investigate the importance of Rtf1 in neonatal and adult cardiomyocytes using knockdown and knockout approaches. We demonstrate that loss of Rtf1 activity in neonatal cardiomyocytes disrupts cell morphology and results in a breakdown of sarcomeres. Similarly, Rtf1 ablation in mature cardiomyocytes of the adult mouse heart leads to myofibril disorganization, disrupted cell-cell junctions, fibrosis, and systolic dysfunction. Rtf1 knockout hearts eventually fail and exhibit structural and gene expression defects resembling dilated cardiomyopathy. Intriguingly, we observed that loss of Rtf1 activity causes a rapid change in the expression of key cardiac structural and functional genes in both neonatal and adult cardiomyocytes, suggesting that Rtf1 is continuously required to support expression of the cardiac gene program.

16.
bioRxiv ; 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37873297

RESUMEN

During heart development, a well-characterized network of transcription factors initiates cardiac gene expression and defines the precise timing and location of cardiac progenitor specification. However, our understanding of the post-initiation transcriptional events that regulate cardiac gene expression is still incomplete. The PAF1C component Rtf1 is a transcription regulatory protein that modulates pausing and elongation of RNA Pol II, as well as cotranscriptional histone modifications. Here we report that Rtf1 is essential for cardiogenesis in fish and mammals, and that in the absence of Rtf1 activity, cardiac progenitors arrest in an immature state. We found that Rtf1's Plus3 domain, which confers interaction with the transcriptional pausing and elongation regulator Spt5, was necessary for cardiac progenitor formation. ChIP-seq analysis further revealed changes in the occupancy of RNA Pol II around the transcription start site (TSS) of cardiac genes in rtf1 morphants reflecting a reduction in transcriptional pausing. Intriguingly, inhibition of pause release in rtf1 morphants and mutants restored the formation of cardiac cells and improved Pol II occupancy at the TSS of key cardiac genes. Our findings highlight the crucial role that transcriptional pausing plays in promoting normal gene expression levels in a cardiac developmental context.

17.
Dev Biol ; 353(1): 19-28, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21338598

RESUMEN

The specification of an appropriate number of cardiomyocytes from the lateral plate mesoderm requires a careful balance of both positive and negative regulatory signals. To identify new regulators of cardiac specification, we performed a phenotype-driven ENU mutagenesis forward genetic screen in zebrafish. In our genetic screen we identified a zebrafish ctr9 mutant with a dramatic reduction in myocardial cell number as well as later defects in primitive heart tube elongation and atrioventricular boundary patterning. Ctr9, together with Paf1, Cdc73, Rtf1 and Leo1, constitute the RNA polymerase II associated protein complex, PAF1. We demonstrate that the PAF1 complex (PAF1C) is structurally conserved among zebrafish and other metazoans and that loss of any one of the components of the PAF1C results in abnormal development of the atrioventricular boundary of the heart. However, Ctr9, Cdc73, Paf1 and Rtf1, but not Leo1, are required for the specification of an appropriate number of cardiomyocytes and elongation of the heart tube. Interestingly, loss of Rtf1 function produced the most severe defects, resulting in a nearly complete absence of cardiac precursors. Based on gene expression analyses and transplantation studies, we found that the PAF1C regulates the developmental potential of the lateral plate mesoderm and is required cell autonomously for the specification of cardiac precursors. Our findings demonstrate critical but differential requirements for PAF1C components in zebrafish cardiac specification and heart morphogenesis.


Asunto(s)
Tipificación del Cuerpo , Corazón/embriología , Miocitos Cardíacos/citología , Factores de Transcripción/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Animales , Movimiento Celular , Morfogénesis , Proteínas Nucleares/fisiología , Células Madre/fisiología
18.
J Cell Biol ; 176(2): 223-30, 2007 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-17227894

RESUMEN

Na(+),K(+) ATPase is an essential ion pump involved in regulating ionic concentrations within epithelial cells. The zebrafish heart and mind (had) mutation, which disrupts the alpha1B1 subunit of Na(+),K(+) ATPase, causes heart tube elongation defects and other developmental abnormalities that are reminiscent of several epithelial cell polarity mutants, including nagie oko (nok). We demonstrate genetic interactions between had and nok in maintaining Zonula occludens-1 (ZO-1)-positive junction belts within myocardial cells. Functional tests and pharmacological inhibition experiments demonstrate that Na(+),K(+) ATPase activity is positively regulated via an N-terminal phosphorylation site that is necessary for correct heart morphogenesis to occur, and that maintenance of ZO-1 junction belts requires ion pump activity. These findings suggest that the correct ionic balance of myocardial cells is essential for the maintenance of epithelial integrity during heart morphogenesis.


Asunto(s)
Uniones Intercelulares/fisiología , Miocardio/enzimología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Pez Cebra/fisiología , Secuencia de Aminoácidos , Animales , Membrana Celular/metabolismo , Polaridad Celular/fisiología , Citoplasma/metabolismo , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Guanilato Ciclasa/genética , Guanilato Ciclasa/metabolismo , Corazón/embriología , Corazón/fisiología , Uniones Intercelulares/efectos de los fármacos , Isoenzimas/genética , Isoenzimas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Morfogénesis/fisiología , Mutación , Miocardio/citología , Ouabaína/farmacología , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Homología de Secuencia de Aminoácido , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , ATPasa Intercambiadora de Sodio-Potasio/genética , Transfección , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Proteína de la Zonula Occludens-1
19.
Dev Biol ; 341(1): 167-75, 2010 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-20178782

RESUMEN

Leo1 is a component of the Polymerase-Associated Factor 1 (PAF1) complex, an evolutionarily conserved protein complex involved in gene transcription regulation and chromatin remodeling. The role of leo1 in vertebrate embryogenesis has not previously been examined. Here, we report that zebrafish leo1 encodes a nuclear protein that has a similar molecular structure to Leo1 proteins from other species. From a genetic screen, we identified a zebrafish mutant defective in the leo1 gene. The truncated Leo1(LA1186) protein lacks a nuclear localization signal and is distributed mostly in the cytoplasm. Phenotypic analysis showed that while the initial patterning of the primitive heart tube is not affected in leo1(LA1186) mutant embryos, the differentiation of cardiomyocytes at the atrioventricular boundary is aberrant, suggesting a requirement for Leo1 in cardiac differentiation. In addition, the expression levels of markers for neural crest-derived cells such as crestin, gch2, dct and mitfa are greatly reduced in leo1(LA1186) mutants, indicating a requirement for Leo1 in maintaining the neural crest population. Consistent with this finding, melanocyte and xanthophore populations are severely reduced, craniofacial cartilage is barely detectable, and mbp-positive glial cells are absent in leo1(LA1186) mutants after three days of development. Taken together, these results provide the first genetic evidence of the requirement for Leo1 in the development of the heart and neural crest cell populations.


Asunto(s)
Corazón/embriología , Cresta Neural/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Diferenciación Celular , ARN Polimerasas Dirigidas por ADN/metabolismo , Mutación , Proteínas Nucleares/genética , Proteínas de Pez Cebra/genética
20.
Pediatr Cardiol ; 32(3): 305-10, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21210099

RESUMEN

Genetic defects in amino acid metabolism are major causes of newborn diseases that often lead to abnormal development and function of the central nervous system. Their direct impact on cardiac development and function has rarely been investigated. Recently, the authors have established that a mitochondrial targeted 2C-type ser/thr protein phosphatase, PP2Cm, is the endogenous phosphatase of the branched-chain alpha keto acid-dehydrogenase complex (BCKD) and functions as a key regulator in branched-chain amino acid catabolism and homeostasis. Genetic inactivation of PP2Cm in mice leads to significant elevation in plasma concentrations of branched-chain amino acids and branched-chain keto acids at levels similar to those associated with intermediate mild forms of maple syrup urine disease. In addition to neuronal tissues, PP2Cm is highly expressed in cardiac muscle, and its expression is diminished in a heart under pathologic stresses. Whereas phenotypic features of heart failure are seen in PP2Cm-deficient zebra fish embryos, cardiac function in PP2Cm-null mice is compromised at a young age and deteriorates faster by mechanical overload. These observations suggest that the catabolism of branched-chain amino acids also has physiologic significance in maintaining normal cardiac function. Defects in PP2Cm-mediated catabolism of branched-chain amino acids can be a potential novel mechanism not only for maple syrup urine disease but also for congenital heart diseases and heart failure.


Asunto(s)
Aminoácidos de Cadena Ramificada/metabolismo , Cardiopatías Congénitas/metabolismo , Insuficiencia Cardíaca/metabolismo , Aminoácidos de Cadena Ramificada/genética , Animales , Insuficiencia Cardíaca/genética , Humanos , Ratones , Modelos Genéticos , Proteína Fosfatasa 2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA