RESUMEN
The cuticle is a hydrophobic structure that seals plant aerial surfaces from the surrounding environment. To better understand how cuticular wax composition changes over development, we conducted an untargeted screen of leaf surface lipids from black cottonwood (Populus trichocarpa). We observed major shifts to the lipid profile across development, from a phenolic and terpene-dominated profile in young leaves to an aliphatic wax-dominated profile in mature leaves. Contrary to the general pattern, levels of aliphatic cis-9-alkenes decreased in older leaves following their accumulation. A thorough examination revealed that the decrease in cis-9-alkenes was accompanied by a concomitant increase in aldehydes, one of them being the volatile compound nonanal. By applying exogenous alkenes to P. trichocarpa leaves, we show that unsaturated waxes in the cuticle undergo spontaneous oxidative cleavage to generate aldehydes and that this process occurs similarly in other alkene-accumulating systems such as balsam poplar (Populus balsamifera) leaves and corn (Zea mays) silk. Moreover, we show that the production of cuticular wax-derived compounds can be extended to other wax components. In bread wheat (Triticum aestivum), 9-hydroxy-14,16-hentriacontanedione likely decomposes to generate 2-heptadecanone and 7-octyloxepan-2-one (a caprolactone). These findings highlight an unusual route to the production of plant volatiles that are structurally encoded within cuticular wax precursors. These processes could play a role in modulating ecological interactions and open the possibility for engineering bioactive volatile compounds into plant waxes.
Asunto(s)
Aldehídos , Populus , Ceras/química , Hojas de la Planta/química , Triticum/química , Alquenos , Zea mays , Epidermis de la PlantaRESUMEN
Very long chain fatty acids (VLCFAs) are precursors to sphingolipids, glycerophospholipids, and plant cuticular waxes. In plants, members of a large 3-ketoacyl-CoA synthase (KCS) gene family catalyze the substrate-specific elongation of VLCFAs. Although it is well understood that KCSs have evolved to use diverse substrates, the underlying molecular determinants of their specificity are still unclear. In this study, we exploited the sequence similarity of a KCS gene cluster from Populus trichocarpa to examine the evolution and molecular determinants of KCS substrate specificity. Functional characterization of five members (PtKCS1, 2, 4, 8, 9) in yeast showed divergent product profiles based on VLCFA length, saturation, and position of the double bond. In addition, homology models, rationally designed chimeras, and site-directed mutants were used to identify two key regions (helix-4 and position 277) as being major determinants of substrate specificity. These results were corroborated with chimeras involving a more distantly related KCS, PtCER6 (the poplar ortholog of the Arabidopsis CER6), and used to show that helix-4 is necessary for the modulatory effect of PtCER2-like5 on KCS substrate specificity. The role of position 277 in limiting product length was further tested by substitution with smaller amino acids, which shifted specificity toward longer products. Finally, treatment with KCS inhibitors (K3 herbicides) showed varying inhibitor sensitivities between the duplicated paralogs despite their sequence similarity. Together, this work sheds light on the molecular mechanisms driving substrate diversification in the KCS family and lays the groundwork for tailoring the production of specific VLCFAs.
Asunto(s)
3-Oxoacil-(Proteína Transportadora de Acil) Sintasa , Arabidopsis , Populus , Especificidad por Sustrato , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/metabolismo , Populus/genética , Populus/metabolismo , Ácidos Grasos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Familia de Multigenes , Plantas/metabolismo , Coenzima A/metabolismoRESUMEN
Cuticular waxes are derived from very-long-chain fatty acid (VLCFA) precursors made by the concerted action of four enzymes that form the fatty acid (FA) elongation complex. The condensing enzyme of the complex confers specificity to substrates of different chain lengths, yet on its own cannot account for the biosynthesis of VLCFAs longer than 28 carbons (C28). Recent evidence from Arabidopsis thaliana points to a synergistic role of clade II BAHD acyltransferases and condensing enzymes in the elongation of VLCFAs beyond C28. In Populus trichocarpa, clade II is composed of seven uncharacterized paralogous genes (PtCER2-like1-7). In the present study, five of these genes were heterologously expressed in yeast and their respective FA profiles were determined. PtCER2-likes differentially altered the accumulation of C28 and C30 FAs when expressed in the presence of the condensing enzyme AtCER6. Among these, PtCER2-like5 produced the highest levels of C28 FAs in yeast and its expression was localized to the epidermis in ß-glucuronidase-reporter poplar lines, consistent with a role in cuticular wax biosynthesis. Complementation of the A. thaliana cer2-5 mutant with PtCER2-like5 increased the levels of C28-derived cuticular waxes at the expense of C30-derived components. Together, these results demonstrate that the role of CER2-likes in cuticular wax biosynthesis is conserved in Populus clade II BAHD acyltransferases.
Asunto(s)
Aciltransferasas/genética , Ácidos Grasos/biosíntesis , Proteínas de Plantas/genética , Populus/metabolismo , Ceras/metabolismo , Aciltransferasas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Grasos/química , Regulación de la Expresión Génica de las Plantas , Filogenia , Componentes Aéreos de las Plantas/citología , Componentes Aéreos de las Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Populus/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismoRESUMEN
OBJECTIVES: A confluence of recent developments in cloud computing, real-time web audio and machine learning psychometric function estimation has made wide dissemination of sophisticated turn-key audiometric assessments possible. The authors have combined these capabilities into an online (i.e., web-based) pure-tone audiogram estimator intended to empower researchers and clinicians with advanced hearing tests without the need for custom programming or special hardware. The objective of this study was to assess the accuracy and reliability of this new online machine learning audiogram method relative to a commonly used hearing threshold estimation technique also implemented online for the first time in the same platform. DESIGN: The authors performed air conduction pure-tone audiometry on 21 participants between the ages of 19 and 79 years (mean 41, SD 21) exhibiting a wide range of hearing abilities. For each ear, two repetitions of online machine learning audiogram estimation and two repetitions of online modified Hughson-Westlake ascending-descending audiogram estimation were acquired by an audiologist using the online software tools. The estimated hearing thresholds of these two techniques were compared at standard audiogram frequencies (i.e., 0.25, 0.5, 1, 2, 4, 8 kHz). RESULTS: The two threshold estimation methods delivered very similar threshold estimates at standard audiogram frequencies. Specifically, the mean absolute difference between threshold estimates was 3.24 ± 5.15 dB. The mean absolute differences between repeated measurements of the online machine learning procedure and between repeated measurements of the Hughson-Westlake procedure were 2.85 ± 6.57 dB and 1.88 ± 3.56 dB, respectively. The machine learning method generated estimates of both threshold and spread (i.e., the inverse of psychometric slope) continuously across the entire frequency range tested from fewer samples on average than the modified Hughson-Westlake procedure required to estimate six discrete thresholds. CONCLUSIONS: Online machine learning audiogram estimation in its current form provides all the information of conventional threshold audiometry with similar accuracy and reliability in less time. More importantly, however, this method provides additional audiogram details not provided by other methods. This standardized platform can be readily extended to bone conduction, masking, spectrotemporal modulation, speech perception, etc., unifying audiometric testing into a single comprehensive procedure efficient enough to become part of the standard audiologic workup.
Asunto(s)
Audiometría de Tonos Puros/métodos , Pérdida Auditiva/diagnóstico , Internet , Aprendizaje Automático , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Índice de Severidad de la Enfermedad , Adulto JovenRESUMEN
Behavioral testing in perceptual or cognitive domains requires querying a subject multiple times in order to quantify his or her ability in the corresponding domain. These queries must be conducted sequentially, and any additional testing domains are also typically tested sequentially, such as with distinct tests comprising a test battery. As a result, existing behavioral tests are often lengthy and do not offer comprehensive evaluation. The use of active machine-learning kernel methods for behavioral assessment provides extremely flexible yet efficient estimation tools to more thoroughly investigate perceptual or cognitive processes without incurring the penalty of excessive testing time. Audiometry represents perhaps the simplest test case to demonstrate the utility of these techniques. In pure-tone audiometry, hearing is assessed in the two-dimensional input space of frequency and intensity, and the test is repeated for both ears. Although an individual's ears are not linked physiologically, they share many features in common that lead to correlations suitable for exploitation in testing. The bilateral audiogram estimates hearing thresholds in both ears simultaneously by conjoining their separate input domains into a single search space, which can be evaluated efficiently with modern machine-learning methods. The result is the introduction of the first conjoint psychometric function estimation procedure, which consistently delivers accurate results in significantly less time than sequential disjoint estimators.
Asunto(s)
Psicometría , Audiometría de Tonos Puros , Umbral Auditivo , Humanos , Aprendizaje AutomáticoRESUMEN
Multinuclear non-heme iron dependent oxidative enzymes (MNIOs), formerly known as domain of unknown function 692 (DUF692), are involved in the post-translational modification of peptides during the biosynthesis of peptide-based natural products. These enzymes catalyze highly unusual and diverse chemical modifications. Several class-defining features of this large family (>14 000 members) are beginning to emerge. Structurally, the enzymes are characterized by a TIM-barrel fold and a set of conserved residues for a di- or tri-iron binding site. They use molecular oxygen to modify peptide substrates, often in a four-electron oxidation taking place at a cysteine residue. This review summarizes the current understanding of MNIOs. Four modifications are discussed in detail: oxazolone-thioamide formation, ß-carbon excision, hydantoin-macrocycle formation, and 5-thiooxazole formation. Briefly discussed are two other reactions that do not take place on Cys residues.
Asunto(s)
Oxidación-Reducción , Péptidos , Procesamiento Proteico-Postraduccional , Péptidos/química , Péptidos/metabolismo , Proteínas de Hierro no Heme/metabolismo , Proteínas de Hierro no Heme/química , Hierro/metabolismo , Hierro/química , Tioamidas/química , Tioamidas/metabolismo , HumanosRESUMEN
The domain of unknown function 692 (DUF692) is an emerging family of posttranslational modification enzymes involved in the biosynthesis of ribosomally-synthesized and posttranslationally modified peptide (RiPP) natural products. Members of this family are multinuclear iron-containing enzymes and only two members have been functionally characterized to date: MbnB and TglH. Here, we used bioinformatics to select another member of the DUF692 family, ChrH, that is ubiquitously encoded in the genomes of the Chryseobacterium genus along with a partner protein ChrI. We structurally characterized the ChrH reaction product and show that the enzyme catalyzes an unprecedented chemical transformation that results in the formation of a macrocycle, an imidazolidinedione heterocycle, two thioaminals, and a thiomethylation. Based on isotopic labeling studies, we propose a mechanism for the four-electron oxidation and methylation of the substrate peptide. This work identifies the first SAM-dependent DUF692 enzyme, further expanding the repertoire of remarkable reactions catalyzed by these enzymes.
RESUMEN
The domain of unknown function 692 (DUF692) is an emerging family of post-translational modification enzymes involved in the biosynthesis of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products. Members of this family are multinuclear iron-containing enzymes, and only two members have been functionally characterized to date: MbnB and TglH. Here, we used bioinformatics to select another member of the DUF692 family, ChrH, that is encoded in the genomes of the Chryseobacterium genus along with a partner protein ChrI. We structurally characterized the ChrH reaction product and show that the enzyme complex catalyzes an unprecedented chemical transformation that results in the formation of a macrocycle, an imidazolidinedione heterocycle, two thioaminals, and a thiomethyl group. Based on isotopic labeling studies, we propose a mechanism for the four-electron oxidation and methylation of the substrate peptide. This work identifies the first SAM-dependent reaction catalyzed by a DUF692 enzyme complex, further expanding the repertoire of remarkable reactions catalyzed by these enzymes. Based on the three currently characterized DUF692 family members, we suggest the family be called multinuclear non-heme iron dependent oxidative enzymes (MNIOs).
RESUMEN
The syntheses of peptidoglycan (PG)-derived peptides containing meso-diaminopimelic acid (meso-Dap) are typically quite lengthy due to the need to prepare orthogonally protected meso-Dap. In this work, the preparation of the PG pentapeptide containing the isosteric analog meso-oxa-Dap is described. The synthesis relies on the ring opening of a peptide embedded aziridine via the attack of a serine residue. The pentapeptide was attached to a GlcNAc-anhydro-MurNAc disaccharide, to produce a putative substrate for the AmpG pore protein.
Asunto(s)
Acetilglucosamina/química , Ácido Diaminopimélico/análogos & derivados , Disacáridos/química , Ácidos Murámicos/química , Oligopéptidos/síntesis química , Peptidoglicano/química , Ácido Diaminopimélico/síntesis química , Ácido Diaminopimélico/química , Oligopéptidos/química , Oxazoles/síntesis química , Oxazoles/químicaRESUMEN
Several blood-feeding organisms, including the malaria parasite detoxify haem released from host haemoglobin by conversion to the insoluble crystalline ferriprotoporphyrin IX dimer known as haemozoin. To date the mechanism of haemozoin formation has remained unknown, although lipids or proteins have been suggested to catalyse its formation. We have found that beta-haematin (synthetic haemozoin) forms rapidly under physiologically realistic conditions near octanol/water, pentanol/water and lipid/water interfaces. Molecular dynamics simulations show that a precursor of the haemozoin dimer forms spontaneously in the absence of the competing hydrogen bonds of water, demonstrating that this substance probably self-assembles near a lipid/water interface in vivo.
Asunto(s)
Hemoproteínas/química , Hemoproteínas/metabolismo , Lípidos/química , Agua/química , Animales , Hemoproteínas/análisis , Hemoproteínas/ultraestructura , Cinética , Modelos Moleculares , Plasmodium falciparum/química , Espectrofotometría Infrarroja , Espectrometría Raman , Difracción de Rayos XRESUMEN
In the thymus, pre-T cell receptor (pre-TCR)--mediated signaling and then TCR-mediated signaling initiate changes in gene expression that result in the maturation of CD4 and CD8 lineage T cells from common precursors. Using gene chip technology, we isolated a murine gene, designated Tox, that encodes a member of the HMG (high-mobility group) box family of DNA-binding proteins. TOX expression is up-regulated by both pre-TCR and TCR activation of immature thymocytes but not by TCR activation of mature naïve T cells. Transgenic mice that express TOX show expanded CD8+ and reduced CD4+ single positive thymocyte subpopulations. We present evidence here that this phenotype results from a perturbation in lineage commitment due to reduced sensitivity to TCR-mediated signaling. This molecular marker of thymic selection events may therefore play a role in establishing the activation threshold of developing T cells and patterning changes in gene expression.