Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(12)2022 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-35743269

RESUMEN

In the Special Issue entitled "Orchid Biochemistry", researchers explored the biochemistry and molecular mechanisms of pigment formation, flower scent, bioactive compounds, plant-microbial interaction, as well as aspects of biotechnology, and these studies have greatly enriched the understanding in the field of orchid biology [...].


Asunto(s)
Orchidaceae , Bioquímica , Biotecnología , Flores/química , Odorantes , Orchidaceae/química
2.
Molecules ; 27(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36144690

RESUMEN

Coronavirus disease (COVID-19) is a viral disease caused by the SARS-CoV-2 virus and is becoming a global threat again because of the higher transmission rate and lack of proper therapeutics as well as the rapid mutations in the genetic pattern of SARS-CoV-2. Despite vaccinations, the prevalence and recurrence of this infection are still on the rise, which urges the identification of potential global therapeutics for a complete cure. Plant-based alternative medicine is becoming popular worldwide because of its higher efficiency and minimal side effects. Yet, identifying the potential medicinal plants and formulating a plant-based medicine is still a bottleneck. Hence, in this study, the systems pharmacology, transcriptomics, and cheminformatics approaches were employed to uncover the multi-targeted mechanisms and to screen the potential phytocompounds from significant medicinal plants to treat COVID-19. These approaches have identified 30 unique COVID-19 human immune genes targeted by the 25 phytocompounds present in four selected ethnobotanical plants. Differential and co-expression profiling and pathway enrichment analyses delineate the molecular signaling and immune functional regulations of the COVID-19 unique genes. In addition, the credibility of these compounds was analyzed by the pharmacological features. The current holistic finding is the first to explore whether the identified potential bioactives could reform into a drug candidate to treat COVID-19. Furthermore, the molecular docking analysis was employed to identify the important bioactive compounds; thus, an ultimately significant medicinal plant was also determined. However, further laboratory evaluation and clinical validation are required to determine the efficiency of a therapeutic formulation against COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Quimioinformática , Humanos , Simulación del Acoplamiento Molecular , Farmacología en Red , Transcriptoma
3.
Physiol Plant ; 172(2): 820-846, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33159319

RESUMEN

Recently, melatonin has gained significant importance in plant research. The presence of melatonin in the plant kingdom has been known since 1995. It is a molecule that is conserved in a wide array of evolutionary distant organisms. Its functions and characteristics have been found to be similar in both plants and animals. The review focuses on the role of melatonin pertaining to physiological functions in higher plants. Melatonin regulates physiological functions regarding auxin activity, root, shoot, and explant growth, activates germination of seeds, promotes rhizogenesis (growth of adventitious and lateral roots), and holds up impelled leaf senescence. Melatonin is a natural bio-stimulant that creates resistance in field crops against various abiotic stress, including heat, chemical pollutants, cold, drought, salinity, and harmful ultra-violet radiation. The full potential of melatonin in regulating physiological functions in higher plants still needs to be explored by further research.


Asunto(s)
Melatonina , Animales , Ácidos Indolacéticos , Reguladores del Crecimiento de las Plantas , Plantas , Estrés Fisiológico
4.
Genomics ; 112(6): 4486-4504, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32771622

RESUMEN

Understanding the immunological behavior of COVID-19 cases at molecular level is essential for therapeutic development. In this study, multi-omics and systems pharmacology analyses were performed to unravel the multi-targeted mechanisms of novel bioactives to combat COVID-19. Immuno-transcriptomic dataset of healthy controls and COVID-19 cases was retrieved from ArrayExpress. Phytocompounds from ethnobotanical plants were collected from PubChem. Differentially expressed 98 immune genes associated with COVID-19 were derived through NetworkAnalyst 3.0. Among 259 plant derived compounds, 154 compounds were targeting 13 COVID-19 immune genes involved in diverse signaling pathways. In addition, pharmacological properties of these phytocompounds were compared with COVID-19 drugs prescribed by WHO, and 25 novel phytocompounds were found to be more efficient with higher bioactive scores. The current study unravels the virogenomic signatures which can serve as therapeutic targets and identified phytocompounds with anti-COVID-19 efficacy. However, further experimental validation is essential to bring out these molecules as commercial drug candidates.


Asunto(s)
Antivirales/farmacología , COVID-19/genética , COVID-19/inmunología , Fitoquímicos/farmacología , Estudios de Casos y Controles , Simulación por Computador , Minería de Datos , Ontología de Genes , Redes Reguladoras de Genes , Humanos , Transcriptoma
5.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34360772

RESUMEN

Plant cell signaling is an intensive research topic in which reductionist can be achieved when we investigate the systems of model plants [...].


Asunto(s)
Fenómenos Fisiológicos de las Plantas , Plantas/metabolismo , Transducción de Señal
6.
Int J Mol Sci ; 22(9)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066387

RESUMEN

Salinity is one of the major abiotic stresses that inhibit the growth, development, and productivity of crops, particularly in hot and dry areas of the world [...].


Asunto(s)
Adaptación Fisiológica/genética , Plantas/genética , Estrés Salino/genética , Agricultura , Productos Agrícolas/genética , Productos Agrícolas/fisiología , Regulación de la Expresión Génica de las Plantas , Ingeniería Genética , Fitomejoramiento
7.
Int J Mol Sci ; 22(6)2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33802953

RESUMEN

Soil salinity is one of the most limiting stresses for crop productivity and quality worldwide. In this sense, jasmonates (JAs) have emerged as phytohormones that play essential roles in mediating plant response to abiotic stresses, including salt stress. Here, we reviewed the mechanisms underlying the activation and response of the JA-biosynthesis and JA-signaling pathways under saline conditions in Arabidopsis and several crops. In this sense, molecular components of JA-signaling such as MYC2 transcription factor and JASMONATE ZIM-DOMAIN (JAZ) repressors are key players for the JA-associated response. Moreover, we review the antagonist and synergistic effects between JA and other hormones such as abscisic acid (ABA). From an applied point of view, several reports have shown that exogenous JA applications increase the antioxidant response in plants to alleviate salt stress. Finally, we discuss the latest advances in genomic techniques for the improvement of crop tolerance to salt stress with a focus on jasmonates.


Asunto(s)
Adaptación Fisiológica/genética , Ciclopentanos/metabolismo , Genómica , Oxilipinas/metabolismo , Plantas/genética , Estrés Salino/genética , Tolerancia a la Sal/genética
8.
Int J Mol Sci ; 21(7)2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-32230974

RESUMEN

Orchids belong to Orchidaceae which is one of the largest families in flowering plants [...].


Asunto(s)
Flores/química , Orchidaceae/química , Flores/genética , Interacciones Microbiota-Huesped/fisiología , Orchidaceae/genética , Fitoquímicos/química , Transcriptoma
9.
Int J Mol Sci ; 21(17)2020 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-32842456
10.
Int J Mol Sci ; 21(3)2020 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-32024235

RESUMEN

The process through induction, proliferation and regeneration of protocorm-like bodies (PLBs) is one of the most advantageous methods for mass propagation of orchids which applied to the world floricultural market. In addition, this method has been used as a tool to identify genes of interest associated with the production of PLBs, and also in breeding techniques that use biotechnology to produce new cultivars, such as to obtain transgenic plants. Most of the molecular studies developed have used model plants as species of Phalaenopsis, and interestingly, despite similarities to somatic embryogenesis, some molecular differences do not yet allow to characterize that PLB induction is in fact a type of somatic embryogenesis. Despite the importance of species for conservation and collection purposes, the flower market is supported by hybrid cultivars, usually polyploid, which makes more detailed molecular evaluations difficult. Studies on the effect of plant growth regulators on induction, proliferation, and regeneration of PLBs are the most numerous. However, studies of other factors and new technologies affecting PLB production such as the use of temporary immersion bioreactors and the use of lighting-emitting diodes have emerged as new tools for advancing the technique with increasing PLB production efficiency. In addition, recent studies on Phalaenopsis equestris genome sequencing have enabled more detailed molecular studies and the molecular characterization of plantlets obtained from this technique currently allow the technique to be evaluated in a more comprehensive way regarding its real applications and main limitations aiming at mass propagation, such as somaclonal variation.


Asunto(s)
Biotecnología/métodos , Orchidaceae/crecimiento & desarrollo , Orchidaceae/genética , Fitomejoramiento , Reproducción , Semillas/crecimiento & desarrollo , Plantas Modificadas Genéticamente
11.
Int J Mol Sci ; 21(1)2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31878296

RESUMEN

Soil salinization is one of the major environmental stressors hampering the growth and yield of crops all over the world. A wide spectrum of physiological and biochemical alterations of plants are induced by salinity, which causes lowered water potential in the soil solution, ionic disequilibrium, specific ion effects, and a higher accumulation of reactive oxygen species (ROS). For many years, numerous investigations have been made into salinity stresses and attempts to minimize the losses of plant productivity, including the effects of phytohormones, osmoprotectants, antioxidants, polyamines, and trace elements. One of the protectants, selenium (Se), has been found to be effective in improving growth and inducing tolerance against excessive soil salinity. However, the in-depth mechanisms of Se-induced salinity tolerance are still unclear. This review refines the knowledge involved in Se-mediated improvements of plant growth when subjected to salinity and suggests future perspectives as well as several research limitations in this field.


Asunto(s)
Antioxidantes/metabolismo , Productos Agrícolas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Selenio/metabolismo , Productos Agrícolas/efectos de los fármacos , Tolerancia a la Sal , Cloruro de Sodio/farmacología
12.
Molecules ; 23(12)2018 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-30486478

RESUMEN

The root of Chinese sage (Salvia miltiorrhiza Bunge) was regarded as top-grade Chinese medicine two thousand years ago, according to Shen Nong Materia Medica. The aim of this study is to develop an easy and reliable means for obtaining tetraploids (4x plants) via thidiazuron-induced direct organogenesis in the presence of colchicine. The resulting 4x plants showed significantly enhanced agronomic traits, including the size of stomata, leaflet, pollen, and seed as well as shoot length, root diameter, number of leaves, and fresh weight of plant. In addition, an obvious reduction of length to width ratio was found in the 4x plants, including stomata, leaflets, pollens, seeds, and roots. The 4x ploidy state of the plants was stable as was proved by evaluation of selection indicators as well as consistent ploidy level at 10th generation plantlets and also on 4x seedlings obtained via self-pollination. The major bioactive compounds, salvianolic acid B, tanshinone I, tanshinone IIA, dihydrotanshinone I and cryptotanshinone, as well as total tanshinones were determined by high performance liquid chromatography (HPLC). The concentrations of dihydrotanshinone I and total tanshinones in the root extract of the 4x plants were significantly higher when compared with the 2x plants. This present study developed a simple and efficient system for inducing and subculture of tetrapolids which have stable ploidy level, enhanced growth characteristics as well as the content of dihydrotanshinone I in the root of S. miltiorrhiza.


Asunto(s)
Biomasa , Cromosomas de las Plantas/genética , Medicina Tradicional China , Plantas Medicinales , Salvia miltiorrhiza , Tetraploidía , Cromosomas de las Plantas/metabolismo , Colchicina/farmacología , Compuestos de Fenilurea/farmacología , Plantas Medicinales/genética , Plantas Medicinales/crecimiento & desarrollo , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/crecimiento & desarrollo , Tiadiazoles/farmacología
13.
Molecules ; 22(11)2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-29112129

RESUMEN

This study developed an efficient and reliable system for inducing polyploidy in Anoectochilus formosanus Hayata, a top-grade medicinal orchid. The resulting tetraploid gave a significant enhancement on various agronomic traits, including dry weight, fresh weight, shoot length, root length, leaf width, the size of stoma, and number of chloroplasts per stoma. A reduction of the ratio of length to width was observed in stomata and leaves of the tetraploid, and consequently, an alteration of organ shape was found. The major bioactive compounds, total flavonoid and gastrodin, were determined by the aluminum chloride colorimetric method and ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS), respectively. The tetraploid produced significantly higher contents of total flavonoid and gastrodin in the leaf, the stem, and the whole plant when compared with the diploid. The resulting tetraploids in this study are proposed to be suitable raw materials in the pharmaceutical industry for enhancing productivity and reducing cost.


Asunto(s)
Alcoholes Bencílicos/análisis , Flavonoides/análisis , Glucósidos/análisis , Orchidaceae/química , Orchidaceae/genética , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/análisis , Orchidaceae/anatomía & histología , Hojas de la Planta/anatomía & histología , Hojas de la Planta/química , Hojas de la Planta/genética , Raíces de Plantas/anatomía & histología , Raíces de Plantas/química , Raíces de Plantas/genética , Tallos de la Planta/anatomía & histología , Tallos de la Planta/química , Tallos de la Planta/genética , Sitios de Carácter Cuantitativo , Espectrometría de Masas en Tándem , Tetraploidía
14.
ScientificWorldJournal ; 2014: 263642, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24963505

RESUMEN

An alternative in vitro protocol for embryo induction directly from intact living seedlings of Phalaenopsis aphrodite subspecies formosana was established in this study. Without the supplementation of plant growth regulators (PGRs), no embryos were obtained from all the seedlings when cultured on the solid medium. In contrast, embryos formed from the seedlings on the 2-layer medium and the 2-step culture system without the use of PGRs. It was found that the age of the seedlings affected embryo induction. The 2-month-old seedlings typically had higher embryogenic responses when compared with the 4-month-old seedlings in the 2-layer medium or 2-step system. For the 2-month-old seedlings, 1 mg/L TDZ resulted in the highest number of embryos at the distal site of the shoot. However, on the leaves' surface, 0.5 mg/L TDZ induced the highest number of embryos. When the 2-month-old seedlings were cultured using the 2-step method at 1 mg/L of TDZ, the highest embryogenic response was obtained, with an average of 44 embryos formed on each seedling. These adventitious embryos were able to convert into plantlets in a PGR-free 1/2 MS medium, and the plantlets had normal morphology and growth.


Asunto(s)
Orchidaceae/embriología , Técnicas de Embriogénesis Somática de Plantas/métodos , Orchidaceae/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Plantones/efectos de los fármacos , Plantones/embriología
15.
Plants (Basel) ; 12(10)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37653856

RESUMEN

Mango (Mangifera indica L.) is one of the most economically important fruit crops across the world, mainly in the tropics and subtropics of Asia, Africa, and Central and South America. Abiotic stresses are the prominent hindrance that can adversely affect the growth, development, and significant yield loss of mango trees. Understanding the molecular physiological mechanisms underlying abiotic stress responses in mango is highly intricate. Therefore, to gain insights into the molecular basis and to alleviate the abiotic stress responses to enhance the yield in the mere future, the use of high-throughput frontier approaches should be tied along with the baseline investigations. Taking these gaps into account, this comprehensive review mainly speculates to provide detailed mechanisms and impacts on physiological and biochemical alterations in mango under abiotic stress responses. In addition, the review emphasizes the promising omics approaches in unraveling the candidate genes and transcription factors (TFs) responsible for abiotic stresses. Furthermore, this review also summarizes the role of different types of biostimulants in improving the abiotic stress responses in mango. These studies can be undertaken to recognize the roadblocks and avenues for enhancing abiotic stress tolerance in mango cultivars. Potential investigations pointed out the implementation of powerful and essential tools to uncover novel insights and approaches to integrate the existing literature and advancements to decipher the abiotic stress mechanisms in mango. Furthermore, this review serves as a notable pioneer for researchers working on mango stress physiology using integrative approaches.

16.
Front Biosci (Landmark Ed) ; 28(8): 169, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37664941

RESUMEN

BACKGROUND: Methods like the bio-synthesis of silver nanoparticles (Ag NPs) using plant extracts have become promising due to their eco-friendly approach. The study aimed to examine the utilization of Garcinia gummi-gutta fruit phytochemicals as agents in the biosynthesis of Ag NPs, evaluation of the antimicrobial, antioxidant, and anti-cancerous properties, as well as the photocatalytic ability of bio-synthesized Ag NPs against Crystal Violet (CV), a triphenylmethane dye. METHODS: The characterization of the physical properties of the Ag NPs synthesized via the green route was done using UV-Vis spectrophotometry (UV-Vis), X-ray Diffraction (XRD), Fourier Transform Infrared Spectrophotometry (FTIR), Scanning Electron Microscopy (SEM), Zeta potential analysis, and Transmission Electron Microscopy (TEM). The dye degradation efficiency of CV was determined using synthesized Ag NPs under UV light by analyzing the absorption maximum at 579 nm. The antimicrobial efficacy of Ag NPs against E. coli, S. aureus, Candida tropicalis, and Candida albicans was examined using the broth dilution method. The antioxidant and anti-cancer properties of the synthesized Ag NPs were assessed using the DPPH and MTT assays. RESULTS: The UV analysis revealed that the peak of synthesized Ag NPs was 442 nm. Data from FTIR, XRD, Zeta potential, SEM, and TEM analysis confirmed the formation of nanoparticles. The SEM and TEM analysis identified the presence of spherical nanoparticles with an average size of 29.12 nm and 24.18 nm, respectively. Maximum dye degradation efficiency of CV was observed at 90.08% after 320 min without any silver leaching, confirming the photocatalytic activity of Ag NPs. The bio-efficiency of the treatment was assessed using the Allium cepa root growth inhibition test, toxicity analysis on Vigna radiata, and Brine shrimp lethality assay. CONCLUSIONS: The findings revealed the environmentally friendly nature of green Ag NPs over physical/chemically synthesized Ag NPs. The synthesized Ag NPs can effectively be used in biomedical and photocatalytic applications.


Asunto(s)
Antiinfecciosos , Garcinia , Nanopartículas del Metal , Neoplasias , Antioxidantes/farmacología , Plata/farmacología , Escherichia coli , Staphylococcus aureus , Antiinfecciosos/farmacología , Violeta de Genciana
17.
Plants (Basel) ; 12(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36840110

RESUMEN

In the scenario of global climate change, understanding how plants respond to drought is critical for developing future crops that face restricted water resources. This present study focuses on the role of WRKY transcription factors on drought tolerance in tomato, Solanum lycopersicum L., which is a significant vegetable crop. WRKY transcription factors are a group of proteins that regulate a wild range of growth and developmental processes in plants such as seed germination and dormancy and the stress response. These transcription factors are defined by the presence of a DNA-binding domain, namely, the WRKY domain. It is well-known that WRKY transcription factors can interact with a variety of proteins and therefore control downstream activities. It aims to simulate the effect of curcumin, a bioactive compound with regulatory capacity, on the protein-protein interaction events by WRKY transcription factors with an emphasis on drought stress. It was found that curcumin binds to WRKY with an energy of -11.43 kcal/mol with inhibitory concentration (Ki) 0.12 mM and has the potential to improve fruit quality and reinforce drought tolerance of S. lycopersicum, according to the results based on bioinformatics tools. The root means square deviation (RMSD) of the C-α, the backbone of 2AYD with ligand coupled complex, displayed a very stable structure with just a little variation of 1.89 Å. MD simulation trajectory of Cα atoms of 2AYD bound to Curcumin revealed more un-ordered orientation in PC1 and PC10 modes and more toward negative correlation from the initial 400 frames during PCA. Establishing the binding energies of the ligand-target interaction is essential in order to characterize the compound's binding affinity to the drought transcription factor. We think we have identified a phyto-agent called curcumin that has the potential to enhance the drought tolerance. Compared to the part of the mismatch repair-base technique that can be used to fix drought related genes, curcumin performed better in a drop-in crop yield over time, and it was suggested that curcumin is a potential candidate factor for improving drought tolerance in tomatoes, and it needs future validation by experiments in laboratory and field.

18.
Genes (Basel) ; 14(7)2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37510388

RESUMEN

Rapidly rising population and climate changes are two critical issues that require immediate action to achieve sustainable development goals. The rising population is posing increased demand for food, thereby pushing for an acceleration in agricultural production. Furthermore, increased anthropogenic activities have resulted in environmental pollution such as water pollution and soil degradation as well as alterations in the composition and concentration of environmental gases. These changes are affecting not only biodiversity loss but also affecting the physio-biochemical processes of crop plants, resulting in a stress-induced decline in crop yield. To overcome such problems and ensure the supply of food material, consistent efforts are being made to develop strategies and techniques to increase crop yield and to enhance tolerance toward climate-induced stress. Plant breeding evolved after domestication and initially remained dependent on phenotype-based selection for crop improvement. But it has grown through cytological and biochemical methods, and the newer contemporary methods are based on DNA-marker-based strategies that help in the selection of agronomically useful traits. These are now supported by high-end molecular biology tools like PCR, high-throughput genotyping and phenotyping, data from crop morpho-physiology, statistical tools, bioinformatics, and machine learning. After establishing its worth in animal breeding, genomic selection (GS), an improved variant of marker-assisted selection (MAS), has made its way into crop-breeding programs as a powerful selection tool. To develop novel breeding programs as well as innovative marker-based models for genetic evaluation, GS makes use of molecular genetic markers. GS can amend complex traits like yield as well as shorten the breeding period, making it advantageous over pedigree breeding and marker-assisted selection (MAS). It reduces the time and resources that are required for plant breeding while allowing for an increased genetic gain of complex attributes. It has been taken to new heights by integrating innovative and advanced technologies such as speed breeding, machine learning, and environmental/weather data to further harness the GS potential, an approach known as integrated genomic selection (IGS). This review highlights the IGS strategies, procedures, integrated approaches, and associated emerging issues, with a special emphasis on cereal crops. In this domain, efforts have been taken to highlight the potential of this cutting-edge innovation to develop climate-smart crops that can endure abiotic stresses with the motive of keeping production and quality at par with the global food demand.


Asunto(s)
Grano Comestible , Fitomejoramiento , Animales , Grano Comestible/genética , Fitomejoramiento/métodos , Productos Agrícolas/genética , Marcadores Genéticos , Genómica/métodos
19.
Plants (Basel) ; 12(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37176873

RESUMEN

Arsenic (As) is a metalloid prevalent mainly in soil and water. The presence of As above permissible levels becomes toxic and detrimental to living organisms, therefore, making it a significant global concern. Humans can absorb As through drinking polluted water and consuming As-contaminated food material grown in soil having As problems. Since human beings are mobile organisms, they can use clean uncontaminated water and food found through various channels or switch from an As-contaminated area to a clean area; but plants are sessile and obtain As along with essential minerals and water through roots that make them more susceptible to arsenic poisoning and consequent stress. Arsenic and phosphorus have many similarities in terms of their physical and chemical characteristics, and they commonly compete to cause physiological anomalies in biological systems that contribute to further stress. Initial indicators of arsenic's propensity to induce toxicity in plants are a decrease in yield and a loss in plant biomass. This is accompanied by considerable physiological alterations; including instant oxidative surge; followed by essential biomolecule oxidation. These variables ultimately result in cell permeability and an electrolyte imbalance. In addition, arsenic disturbs the nucleic acids, the transcription process, and the essential enzymes engaged with the plant system's primary metabolic pathways. To lessen As absorption by plants, a variety of mitigation strategies have been proposed which include agronomic practices, plant breeding, genetic manipulation, computer-aided modeling, biochemical techniques, and the altering of human approaches regarding consumption and pollution, and in these ways, increased awareness may be generated. These mitigation strategies will further help in ensuring good health, food security, and environmental sustainability. This article summarises the nature of the impact of arsenic on plants, the physio-biochemical mechanisms evolved to cope with As stress, and the mitigation measures that can be employed to eliminate the negative effects of As.

20.
Front Biosci (Schol Ed) ; 15(1): 1, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36959109

RESUMEN

Traditional herbal medicine is still used for basic healthcare by a significant portion of the population in developing countries. This study aimed to explore the medicinal plant's diversity and to document related traditional knowledge in the Safi region of Morocco. We used semi-structured questionnaires to interview 222 informants living in the study area. To perform data analysis, we used quantitative indices like use value (UV), family use value (FUV), fidelity level (FL), the relative popularity level (RPL), rank of order priority (ROP), and informant consensus factor (ICF). We reported the ethnomedicinal uses of 144 medicinal plants belonging to 64 families. According to the findings, the dominating families were Lamiaceae (17 taxa), Asteraceae (15 taxa), and Apiaceae (12 taxa). The most commonly utilized plant part (48%) was leaves. The decoction was reported as the main preparation method (42%). Highly cited plant species were Marrubium vulgare (UV = 0.56), Salvia rosmarinus Spenn. (UV = 0.47), Thymus serpyllum (UV = 0.32), and Dysphania ambrosioides (UV = 0.29). Papaveraceae (FUV = 0.26), and Urticaceae (FUV= 0.23), Geraniaceae (FUV = 0.17), Oleaceae (FUV = 0.17), Lamiaceae (FUV = 0.17) had the highest family use-values. Gastrointestinal disorders (88%), respiratory diseases (85%), and anemia (66%) have the greatest ICF values. This study reveals the indigenous people's reliance on plant-derived traditional medicine to prevent, alleviate, and treat a broad range of health concerns. Our findings will provide a scientific basis for ethnomedicinal legacy conservation and further scientific investigations aimed at new natural bioactive molecules discovery.


Asunto(s)
Lamiaceae , Plantas Medicinales , Humanos , Etnobotánica/métodos , Fitoterapia/métodos , Marruecos , Medicina Tradicional/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA