RESUMEN
Banana (Musa acuminata) fruits ripening at 30 °C or above fail to develop yellow peels; this phenomenon, called green ripening, greatly reduces their marketability. The regulatory mechanism underpinning high temperature-induced green ripening remains unknown. Here we decoded a transcriptional and post-translational regulatory module that causes green ripening in banana. Banana fruits ripening at 30 °C showed greatly reduced expression of 5 chlorophyll catabolic genes (CCGs), MaNYC1 (NONYELLOW COLORING 1), MaPPH (PHEOPHYTINASE), MaTIC55 (TRANSLOCON AT THE INNER ENVELOPE MEMBRANE OF CHLOROPLASTS 55), MaSGR1 (STAY-GREEN 1), and MaSGR2 (STAY-GREEN 2), compared to those ripening at 20 °C. We identified a MYB transcription factor, MaMYB60, that activated the expression of all 5 CCGs by directly binding to their promoters during banana ripening at 20 °C, while showing a weaker activation at 30 °C. At high temperatures, MaMYB60 was degraded. We discovered a RING-type E3 ligase MaBAH1 (benzoic acid hypersensitive 1) that ubiquitinated MaMYB60 during green ripening and targeted it for proteasomal degradation. MaBAH1 thus facilitated MaMYB60 degradation and attenuated MaMYB60-induced transactivation of CCGs and chlorophyll degradation. By contrast, MaMYB60 upregulation increased CCG expression, accelerated chlorophyll degradation, and mitigated green ripening. Collectively, our findings unravel a dynamic, temperature-responsive MaBAH1-MaMYB60-CCG module that regulates chlorophyll catabolism, and the molecular mechanism underpinning green ripening in banana. This study also advances our understanding of plant responses to high-temperature stress.
Asunto(s)
Musa , Temperatura , Musa/genética , Musa/química , Musa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Clorofila/metabolismo , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismoRESUMEN
Chilling injury has a negative impact on the quantity and quality of crops, especially subtropical and tropical plants. The plant cell wall is not only the main source of biomass production, but also the first barrier to various stresses. Therefore, improving the understanding of the alterations in cell wall architecture is of great significance for both biomass production and stress adaptation. Herein, we demonstrated that the cell wall principal component cellulose accumulated during chilling stress, which was caused by the activation of MaCESA proteins. The sequence-multiple comparisons show that a cold-inducible NAC transcriptional factor MaNAC1, a homologue of Secondary Wall NAC transcription factors, has high sequence similarity with Arabidopsis SND3. An increase in cell wall thickness and cellulosic glucan content was observed in MaNAC1-overexpressing Arabidopsis lines, indicating that MaNAC1 participates in cellulose biosynthesis. Over-expression of MaNAC1 in Arabidopsis mutant snd3 restored the defective secondary growth of thinner cell walls and increased cellulosic glucan content. Furthermore, the activation of MaCESA7 and MaCESA6B cellulose biosynthesis genes can be directly induced by MaNAC1 through binding to SNBE motifs within their promoters, leading to enhanced cellulose content during low-temperature stress. Ultimately, tomato fruit showed greater cold resistance in MaNAC1 overexpression lines with thickened cell walls and increased cellulosic glucan content. Our findings revealed that MaNAC1 performs a vital role as a positive modulator in modulating cell wall cellulose metabolism within banana fruit under chilling stress.
Asunto(s)
Arabidopsis , Musa , Celulosa/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Musa/genética , Musa/metabolismo , Frutas/genética , Frutas/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas/genéticaRESUMEN
Transcriptional regulation mechanisms underlying chilling injury (CI) development have been widely investigated in model plants and cold-sensitive fruits, such as banana (Musa acuminata). However, unlike the well-known NAC and WRKY transcription factors (TFs), the function and deciphering mechanism of heat shock factors (HSFs) involving in cold response are still fragmented. Here, we showed that hot water treatment (HWT) alleviated CI in harvested banana fruits accomplishing with reduced reactive oxygen species (ROS) accumulation and increased antioxidant enzyme activities. A cold-inducible but HWT-inhibited HSF, MaHsf24, was identified. Using DNA affinity purification sequencing (DAP-seq) combined with RNA-seq analyses, we found three heat shock protein (HSP) genes (MaHSP23.6, MaHSP70-1.1 and MaHSP70-1.2) and three antioxidant enzyme genes (MaAPX1, MaMDAR4 and MaGSTZ1) were the potential targets of MaHsf24. Subsequent electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) and dual-luciferase reporter (DLR) analyses demonstrated that MaHsf24 repressed the transcription of these six targets via directly binding to their promoters. Moreover, stably overexpressing MaHsf24 in tomatoes increased cold sensitivity by suppressing the expressions of HSPs and antioxidant enzyme genes, while HWT could recover cold tolerance, maintaining higher levels of HSPs and antioxidant enzyme genes, and activities of antioxidant enzymes. In contrast, transiently silencing MaHsf24 by virus-induced gene silencing (VIGS) in banana peels conferred cold resistance with the upregulation of MaHSPs and antioxidant enzyme genes. Collectively, our findings support the negative role of MaHsf24 in cold tolerance, and unravel a novel regulatory network controlling bananas CI occurrence, concerning MaHsf24-exerted inhibition of MaHSPs and antioxidant enzyme genes.
RESUMEN
Banana (Musa acuminata) fruit ripening under high temperatures (>24 °C) undergoes green ripening due to failure of chlorophyll degradation, which greatly reduces marketability. However, the mechanism underlying high temperature-repressed chlorophyll catabolism in banana fruit is not yet well understood. Here, using quantitative proteomic analysis, 375 differentially expressed proteins were identified in normal yellow and green ripening in banana. Among these, one of the key enzymes involved in chlorophyll degradation, NON-YELLOW COLORING 1 (MaNYC1), exhibited reduced protein levels when banana fruit ripened under high temperature. Transient overexpression of MaNYC1 in banana peels resulted in chlorophyll degradation under high temperature, which weakens the green ripening phenotype. Importantly, high temperature induced MaNYC1 protein degradation via the proteasome pathway. A banana RING E3 ligase, NYC1-interacting protein 1 (MaNIP1), was found to interact with and ubiquitinate MaNYC1, leading to its proteasomal degradation. Furthermore, transient overexpression of MaNIP1 attenuated MaNYC1-induced chlorophyll degradation in banana fruits, indicating that MaNIP1 negatively regulates chlorophyll catabolism by affecting MaNYC1 degradation. Taken together, the findings establish a post-translational regulatory module of MaNIP1-MaNYC1 that mediates high temperature-induced green ripening in bananas.
Asunto(s)
Musa , Musa/genética , Musa/metabolismo , Temperatura , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteómica , Clorofila/metabolismo , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
High temperatures (>24°C) prevent the development of a yellow peel on bananas called green ripening, owing to the inhibition of chlorophyll degradation. This phenomenon greatly reduces the marketability of banana fruit, but the mechanisms underlining high temperature-repressed chlorophyll catabolism need to be elucidated. Herein, we found that the protein accumulation of chlorophyll catabolic enzyme MaSGR1 (STAY-GREEN 1) was reduced when bananas ripened at high temperature. Transiently expressing MaSGR1 in banana peel showed its positive involvement in promoting chlorophyll degradation under high temperature, thereby weakening green ripening phenotype. Using yeast two-hybrid screening, we identified a RING-type E3 ubiquitin ligase, MaRZF1 (RING Zinc Finger 1), as a putative MaSGR1-interacting protein. MaRZF1 interacts with and targets MaSGR1 for ubiquitination and degradation via the proteasome pathway. Moreover, upregulating MaRZF1 inhibited chlorophyll degradation, and attenuated MaSGR1-promoted chlorophyll degradation in bananas during green ripening, indicating that MaRZF1 negatively regulates chlorophyll catabolism via the degradation of MaSGR1. Taken together, MaRZF1 and MaSGR1 form a regulatory module to mediate chlorophyll degradation associated with high temperature-induced green ripening in bananas. Therefore, our findings expand the understanding of posttranslational regulatory mechanisms of temperature stress-caused fruit quality deterioration.
Asunto(s)
Musa , Temperatura , Musa/genética , Musa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Frutas/metabolismo , Clorofila/metabolismo , Regulación de la Expresión Génica de las PlantasRESUMEN
Hydrogen refueling stations (HRSs) are among the most important infrastructures for fuel cell vehicles. However, the safety issue of HRSs has become a key constraint to the wide application and development of hydrogen energy. This article presents a quantitative risk assessment of the first liquid HRS (LHRS) in China and conducts a comprehensive assessment in terms of both individual (IR) and societal risks (SRs). The results showed that both the IRs and SRs related to the LHRS exceeded the risk acceptance criteria. The rupture of the flexible hose of the dispenser and the leak from the compressor are the main contributors to these risks. On the other hand, implementing appropriate mitigation measures on the level of the LHRS dispenser and compressor, including the addition of breakaway couplings in the flexible hose of the dispenser, the installation of hydrogen detection sensors, the arrangement of automatic and manual emergency shutdown buttons, and the elevation of the compressor, is capable of reducing the risk of the LHRS to be within the risk acceptance criteria.
RESUMEN
Fruit ripening is a complex developmental process, which is modulated by both transcriptional and post-translational events. Control of fruit ripening is important in maintaining moderate quality traits and minimizing postharvest deterioration. In this study, we discovered that the transcription factor MaMYB4 acts as a negative regulator of fruit ripening in banana. The protein levels of MaMYB4 decreased gradually with banana fruit ripening, paralleling ethylene production, and decline in firmness. DNA affinity purification sequencing combined with RNA-sequencing analyses showed that MaMYB4 preferentially binds to the promoters of various ripening-associated genes including ethylene biosynthetic and cell wall modifying genes. Furthermore, ectopic expression of MaMYB4 in tomato delayed tomato fruit ripening, which was accompanied by downregulation of ethylene biosynthetic and cell wall modifying genes. Importantly, two RING finger E3 ligases MaBRG2/3, whose protein accumulation increased progressively with fruit ripening, were found to interact with and ubiquitinate MaMYB4, contributing to decreased accumulation of MaMYB4 during fruit ripening. Transient overexpression of MaMYB4 and MaBRG2/3 in banana fruit ripening delayed or promoted fruit ripening by inhibiting or stimulating ethylene biosynthesis, respectively. Taken together, we demonstrate that MaMYB4 negatively modulates banana fruit ripening, and that MaMYB4 abundance could be regulated by protein ubiquitination, thus providing insights into the role of MaMYB4 in controlling fruit ripening at both transcriptional and post-translational levels.
Asunto(s)
Musa , Etilenos/metabolismo , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Musa/genética , Musa/metabolismo , Proteínas de Plantas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
BACKGROUND: Multiple MYB transcription factors (TFs) are involved in the regulation of plant coloring. Betalain is a kind of natural plant pigment and its biosynthesis is regulated by a number of enzymes. Despite this, little is known about the molecular properties and roles of MYB TFs in pitaya betalain biosynthesis. RESULTS: In the present study, we identified a 1R-MYB gene, HuMYB132, which is preferentially expressed in red-pulp pitaya at the mature stage. It was clustered with Arabidopsis R-R-type genes and had two DNA-binding domains and a histidine-rich region. The expression assays in N. benthamiana and yeast indicated that HuMYB132 is a nucleus-localized protein with transcriptional activation activity. Dual luciferase reporter assay and electrophoretic mobility shift assays (EMSA) demonstrated that HuMYB132 could promote the transcriptional activities of HuADH1, HuCYP76AD1-1, and HuDODA1 by binding to their promoters. Silencing HuMYB132 reduced betalain accumulation and the expression levels of betalain biosynthetic genes in pitaya pulps. CONCLUSIONS: According to our findings, HuMYB132, a R-R type member of 1R-MYB TF subfamily, positively regulates pitaya betalain biosynthesis by regulating the expression of HuADH1, HuCYP76AD1-1, and HuDODA1. The present study provides a new theoretical reference for the management of pitaya betalain biosynthesis and also provides an essential basis for future regulation of betalain biosynthesis in Hylocereus.
Asunto(s)
Arabidopsis , Betalaínas , Factores de Transcripción/metabolismo , Regiones Promotoras Genéticas/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismoRESUMEN
Ripening of fleshy fruits involves both diverse post-translational modifications (PTMs) and dynamic transcriptional reprogramming, but the interconnection between PTMs, such as protein phosphorylation and transcriptional regulation, in fruit ripening remains to be deciphered. Here, we conducted a phosphoproteomic analysis during banana (Musa acuminata) ripening and identified 63 unique phosphopeptides corresponding to 49 proteins. Among them, a Musa acuminata basic leucine zipper transcription factor21 (MabZIP21) displayed elevated phosphorylation level in the ripening stage. MabZIP21 transcript and phosphorylation abundance increased during banana ripening. Genome-wide MabZIP21 DNA binding assays revealed MabZIP21-regulated functional genes contributing to banana ripening, and electrophoretic mobility shift assay, chromatin immunoprecipitation coupled with quantitative polymerase chain reaction, and dual-luciferase reporter analyses demonstrated that MabZIP21 stimulates the transcription of a subset of ripening-related genes via directly binding to their promoters. Moreover, MabZIP21 can be phosphorylated by MaMPK6-3, which plays a role in banana ripening, and T318 and S436 are important phosphorylation sites. Protein phosphorylation enhanced MabZIP21-mediated transcriptional activation ability, and transient overexpression of the phosphomimetic form of MabZIP21 accelerated banana fruit ripening. Additionally, MabZIP21 enlarges its role in transcriptional regulation by activating the transcription of both MaMPK6-3 and itself. Taken together, this study reveals an important machinery of protein phosphorylation in banana fruit ripening in which MabZIP21 is a component of the complex phosphorylation pathway linking the upstream signal mediated by MaMPK6-3 with transcriptional controlling of a subset of ripening-associated genes.
Asunto(s)
Frutas/crecimiento & desarrollo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Musa/crecimiento & desarrollo , Musa/genética , Fosforilación/genética , Factores de Transcripción/metabolismo , China , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Musa/metabolismo , Factores de Transcripción/genéticaRESUMEN
BACKGROUND AND PURPOSE: Thoracic surgeons are now adopting a new method of using a mesh covering to reduce recurrence in surgical pleurodesis for pneumothorax. We aimed to review the literature and compare the outcomes of using mesh covering as an additional procedure during surgical pleurodesis. METHODS: A comprehensive search was performed from inception to October 2022 on PubMed, Embase, Cochrane and Scopus. Randomised controlled trials (RCTs) and observational cohort studies (OCSs) comparing the use of mesh coverage, and different materials were included. Data were extracted to compare recurrence and other outcomes using a random effect model. RESULTS: 23 studies consisting of 2 RCTs and 21 OCSs totalling 5092 patients were included. Patients with a mesh had a significantly lower recurrence (OR = 0.22, 95% CI 0.12-0.42, p < 0.0001) and a shorter duration of chest tube drainage (SMD = -0.74 days, 95% CI -0.28 to -1.20, p < 0.0001) but no significant difference in the length of operation. The use of polyglycolic acid (PGA) and vicryl mesh was associated with a significantly shorter duration of chest tube drainage [(PGA, SMD = 0.83 days, 95% CI 0.14-1.52, p < 0.0001), (vicryl, SMD = 1.06 days, 95% CI 0.71-2.82, p = 0.0005)]. They also had a shorter post-operative length of stay than oxidized regenerative cellulose (ORC) but this was not statistically significant. CONCLUSION: The use of a mesh material reduced the incidence of post-operative air leaks in the short term and the recurrence rate in the long term. Some mesh materials such as PGA and vicryl performed better than other materials.
Asunto(s)
Neumotórax , Humanos , Neumotórax/cirugía , Neumotórax/tratamiento farmacológico , Mallas Quirúrgicas , Poliglactina 910/uso terapéutico , Pleurodesia/métodos , Drenaje , Recurrencia , Cirugía Torácica Asistida por Video/métodosRESUMEN
The ethylene insensitive 3/ethylene insensitive 3-like (EIN3/EIL) plays an indispensable role in fruit ripening. However, the regulatory mechanism that links post-translational modification of EIN3/EIL to fruit ripening is largely unknown. Here, we studied the expression of 13 MaEIL genes during banana fruit ripening, among which MaEIL9 displayed higher enhancement particularly in the ripening stage. Consistent with its transcript pattern, abundance of MaEIL9 protein gradually increased during the ripening process, with maximal enhancement in the ripening. DNA affinity purification (DAP)-seq analysis revealed that MaEIL9 directly targets a subset of genes related to fruit ripening, such as the starch hydrolytic genes MaAMY3D and MaBAM1. Stably overexpressing MaEIL9 in tomato fruit hastened fruit ripening, whereas transiently silencing this gene in banana fruit retarded the ripening process, supporting a positive role of MaEIL9 in fruit ripening. Moreover, oxidation of methionines (Met-129, Met-130, and Met-282) in MaEIL9 resulted in the loss of its DNA-binding capacity and transcriptional activation activity. Importantly, we identified MaEIL9 as a potential substrate protein of methionine sulfoxide reductase A MaMsrA4, and oxidation of Met-129, Met-130, and Met-282 in MaEIL9 could be restored by MaMsrA4. Collectively, our findings reveal a novel regulatory network controlling banana fruit ripening, which involves MaMsrA4-mediated redox regulation of the ethylene signaling component MaEIL9.
Asunto(s)
Musa , Musa/genética , Musa/metabolismo , Metionina/genética , Metionina/metabolismo , Proteínas de Plantas/metabolismo , Frutas/metabolismo , Racemetionina/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las PlantasRESUMEN
Fruit ripening in tomato (Solanum lycopersicum) is the result of selective expression of ripening-related genes, which are regulated by transcription factors (TFs). The NAC (NAM, ATAF1/2, and CUC2) TF family is one of the largest families of plant-specific TFs and members are involved in a variety of plant physiological activities, including fruit ripening. Fruit ripening-associated NAC TFs studied in tomato to date include NAC-NOR (non-ripening), SlNOR-like1 (non-ripening like1), SlNAC1, and SlNAC4. Considering the large number of NAC genes in the tomato genome, there is little information about the possible roles of other NAC members in fruit ripening, and research on their target genes is lacking. In this study, we characterize SlNAM1, a NAC TF, which positively regulates the initiation of tomato fruit ripening via its regulation of ethylene biosynthesis. The onset of fruit ripening in slnam1-deficient mutants created by CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9) technology was delayed, whereas fruit ripening in OE-SlNAM1 lines was accelerated compared with the wild type. The results of RNA-sequencing (RNA-seq) and promoter analysis suggested that SlNAM1 directly binds to the promoters of two key ethylene biosynthesis genes (1-aminocyclopropane-1-carboxylate synthase: SlACS2 and SlACS4) and activates their expression. This hypothesis was confirmed by electrophoretic mobility shift assays and dual-luciferase reporter assay. Our findings provide insights into the mechanisms of ethylene production and enrich understanding of the tomato fruit ripening regulatory network.
Asunto(s)
Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/genética , Frutas/genética , Frutas/fisiología , Liasas/genética , Liasas/metabolismo , Solanum lycopersicum/fisiología , Proteínas de Plantas/genética , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Archosaurs diversified and became dominant during the Mesozoic Era, but their earliest relatives (non-archosaurian archosauromorphs) were already scarcely present in the late Permian. Here we describe a new species of non-archosaurian archosauriform from the upper Permian of Xinjiang, China. Preserved as a partial hindlimb, it possesses a few derived features shared with other archosauriforms, including a much stouter tibia than fibula, a longer metatarsal III than metatarsal IV, and a hooked metatarsal V. Phylogenetic analysis confirmed the new taxon to be a non-archosaurian archosauriform. The morphology of the knee, crus, and pes shows traits that are commonly related with a parasagittal posture, including an entirely proximo-distal articulation of the femur and fibula, the slender and closely spaced tibia and fibula, and a mesaxonic foot with a reduced fifth toe. The new taxon shows that the parasagittal posture evolved before the end-Permian Mass Extinction.
Asunto(s)
Extinción Biológica , Fósiles , Animales , Filogenia , Postura , ChinaRESUMEN
Fruit ripening is a critical phase in the production and marketing of fruits. Previous studies have indicated that fruit ripening is a highly coordinated process, mainly regulated at the transcriptional level, in which transcription factors play essential roles. Thus, identifying key transcription factors regulating fruit ripening as well as their associated regulatory networks promises to contribute to a better understanding of fruit ripening. In this study, temporal gene expression analyses were performed to investigate banana fruit ripening with the aim to discern the global architecture of gene regulatory networks underlying fruit ripening. Eight time points were profiled covering dynamic changes of phenotypes, the associated physiology and levels of known ripening marker genes. Combining results from a weighted gene co-expression network analysis (WGCNA) as well as cis-motif analysis and supported by EMSA, Y1H, tobacco-, banana-transactivation experimental results, the regulatory network of banana fruit ripening was constructed, from which 25 transcription factors were identified as prime candidates to regulate the ripening process by modulating different ripening-related pathways. Our study presents the first global view of the gene regulatory network involved in banana fruit ripening, which may provide the basis for a targeted manipulation of fruit ripening to attain higher banana and loss-reduced banana commercialization.
Asunto(s)
Musa , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Musa/genética , Musa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Ethylene plays a critical regulatory role in climacteric fruit ripening, and its biosynthesis is fine-tuned at the transcriptional and posttranslational levels. Nevertheless, the mechanistic link between transcriptional and posttranslational regulation of ethylene biosynthesis during fruit ripening is largely unknown. This study uncovers a coordinated transcriptional and posttranslational mechanism of controlling ethylene biosynthesis during banana (Musa acuminata) fruit ripening. NAC (NAM, ATAF, and CUC) proteins MaNAC1 and MaNAC2 repress the expression of MaERF11, a protein previously known to negatively regulate ethylene biosynthesis genes MaACS1 and MaACO1 A RING E3 ligase MaXB3 interacts with MaNAC2 to promote its ubiquitination and degradation, leading to the inhibition of MaNAC2-mediated transcriptional repression. In addition, MaXB3 also targets MaACS1 and MaACO1 for proteasome degradation. Further evidence supporting the role of MaXB3 is provided by its transient and ectopic overexpression in banana fruit and tomato (Solanum lycopersicum), respectively, which delays fruit ripening via repressing ethylene biosynthesis and thus ethylene response. Strikingly, MaNAC1 and MaNAC2 directly repress MaXB3 expression, suggesting a feedback regulatory mechanism that maintains a balance of MaNAC2, MaACS1, and MaACO1 levels. Collectively, our findings establish a multilayered regulatory cascade involving MaXB3, MaNACs, MaERF11, and MaACS1/MaACO1 that controls ethylene biosynthesis during climacteric ripening.
Asunto(s)
Etilenos/biosíntesis , Frutas/crecimiento & desarrollo , Frutas/genética , Frutas/metabolismo , Musa/crecimiento & desarrollo , Musa/genética , Musa/metabolismo , China , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de PlantasRESUMEN
Rock materials show dramatic dynamic weakening in large-displacement (m), high-velocity (â¼1 m/s) friction experiments, providing a mechanism for the generation of large, natural earthquakes. However, whether such weakening occurs during induced M3-4 earthquakes (dm displacements) is unknown. We performed rotary-shear experiments on simulated fault gouges prepared from the source-, reservoir- and caprock formations present in the seismogenic Groningen gas field (Netherlands). Water-saturated gouges were subjected to a slip pulse reaching a peak circumferential velocity of 1.2-1.7 m/s and total displacements of 13-20 cm, at 2.5-20 MPa normal stress. The results show 22%-81% dynamic weakening within 5-12 cm of slip, depending on normal stress and gouge composition. At 20 MPa normal stress, dynamic weakening from peak friction coefficients of 0.4-0.9 to 0.19-0.27 was observed, probably through thermal pressurization. We infer that similar effects play a key role during induced seismic slip on faults in the Groningen and other reservoir systems.
RESUMEN
Betalains are water-soluble nitrogen-containing pigments with multiple bioactivities. Pitaya is the only large-scale commercially grown fruit containing abundant betalains for consumers. However, the upstream regulators in betalain biosynthesis are still not clear. In this study, HmoWRKY40, a novel WRKY transcription factor, was obtained from the transcriptome data of pitaya (Hylocereus monacanthus). HmoWRKY40 is a member of the Group IIa WRKY family, containing a conserved WRKY motif, and it is located in the nucleus. The betalain contents and expression levels of HmoWRKY40 increased rapidly during the coloration of pitaya and reached their maximums on the 23rd day after artificial pollination (DAAP). Yeast one-hybrid and transient expression assays showed that HmoWRKY40 could bind and activate the promoter of HmoCYP76AD1. Silencing the HmoWRKY40 gene resulted in a significant reduction of betacyanin contents. These results indicate that HmoWRKY40 transcriptionally activates HmoCYP76AD, which is involved in the regulation of pitaya betalain biosynthesis. The results of the present study provide new regulatory networks related to betalain biosynthesis in pitaya.
Asunto(s)
Betalaínas/biosíntesis , Cactaceae/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Cactaceae/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Clonación Molecular , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Pigmentación , Proteínas de Plantas/genética , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Levaduras/genéticaRESUMEN
Abscission is triggered by multiple environmental and developmental cues, including endogenous plant hormones. KNOTTED-LIKE HOMEOBOX (KNOX) transcription factors (TFs) play an important role in controlling abscission in plants. However, the underlying molecular mechanism of KNOX TFs in abscission is largely unknown. Here, we identified LcKNAT1, a KNOTTED-LIKE FROM ARABIDOPSIS THALIANA1 (KNAT1)-like protein from litchi, which regulates abscission by modulating ethylene biosynthesis. LcKNAT1 is expressed in the fruit abscission zone and its expression decreases during fruitlet abscission. Furthermore, the expression of the ethylene biosynthetic genes LcACS1, LcACS7, and LcACO2 increases in the fruit abscission zone, in parallel with the emission of ethylene in fruitlets. In vitro and in vivo assays revealed that LcKNAT1 inhibits the expression of LcACS/ACO genes by directly binding to their promoters. Moreover, ectopic expression of LcKNAT1 represses flower abscission in tomatoes. Transgenic plants expressing LcKNAT1 also showed consistently decreased expression of ACS/ACO genes. Collectively, these results indicate that LcKNAT1 represses abscission via the negative regulation of ethylene biosynthesis.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Litchi , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Etilenos , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio , Litchi/genética , Litchi/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
The tomato non-ripening (nor) mutant generates a truncated 186-amino-acid protein (NOR186) and has been demonstrated previously to be a gain-of-function mutant. Here, we provide more evidence to support this view and answer the open question of whether the NAC-NOR gene is important in fruit ripening. Overexpression of NAC-NOR in the nor mutant did not restore the full ripening phenotype. Further analysis showed that the truncated NOR186 protein is located in the nucleus and binds to but does not activate the promoters of 1-aminocyclopropane-1-carboxylic acid synthase2 (SlACS2), geranylgeranyl diphosphate synthase2 (SlGgpps2), and pectate lyase (SlPL), which are involved in ethylene biosynthesis, carotenoid accumulation, and fruit softening, respectively. The activation of the promoters by the wild-type NOR protein can be inhibited by the mutant NOR186 protein. On the other hand, ethylene synthesis, carotenoid accumulation, and fruit softening were significantly inhibited in CR-NOR (CRISPR/Cas9-edited NAC-NOR) fruit compared with the wild-type, but much less severely affected than in the nor mutant, while they were accelerated in OE-NOR (overexpressed NAC-NOR) fruit. These data further indicated that nor is a gain-of-function mutation and NAC-NOR plays a significant role in ripening of wild-type fruit.
Asunto(s)
Solanum lycopersicum , Etilenos , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Mutación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
KEY MESSAGE: Four MaHDZs are possibly involved in banana fruit ripening by activating the transcription of genes related to ethylene biosynthesis and cell wall degradation, such as MaACO5, MaEXP2, MaEXPA10, MaPG4 and MaPL4. The homeodomain-leucine zipper (HD-ZIP) proteins represent plant-specific transcription factors, which contribute to various plant physiological processes. However, little information is available regarding the association of HD-ZIPs with banana fruit ripening. In this study, we identified a total of 96 HD-ZIP genes in banana genome, which were divided into four different groups consisting of 35, 31, 9 and 21 members in the I, II, III and IV subfamilies, respectively. The expression patterns of MaHDZ genes during fruit ripening showed that MaHDZI.19, MaHDZI.26, MaHDZII.4 and MaHDZII.7 were significantly up-regulated in the ripening stage and thus suggested to be potential regulators of banana fruit ripening. Furthermore, MaHDZI.19, MaHDZI.26, MaHDZII.4 and MaHDZII.7 were found to localize exclusively in the nucleus and exhibit transcriptional activation capacities. Importantly, MaHDZI.19, MaHDZI.26, MaHDZII.4 and MaHDZII.7 stimulated the transcription of several ripening-related genes including MaACO5 related to ethylene biosynthesis, MaEXP2, MaEXPA10, MaPG4 and MaPL4 were associated with cell wall degradation, through directly binding to their promoters. Taken together, our findings expand the functions of HD-ZIP transcription factors and identify four MaHDZs likely involved in regulating banana fruit ripening by activating the expression of genes related to ethylene biosynthesis and cell wall modification, which may have potential application in banana molecular breeding.