Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Telemed J E Health ; 29(12): 1810-1818, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37256712

RESUMEN

Aim: To describe barriers to implementation of diabetic retinopathy (DR) teleretinal screening programs and artificial intelligence (AI) integration at the University of California (UC). Methods: Institutional representatives from UC Los Angeles, San Diego, San Francisco, Irvine, and Davis were surveyed for the year of their program's initiation, active status at the time of survey (December 2021), number of primary care clinics involved, screening image quality, types of eye providers, image interpretation turnaround time, and billing codes used. Representatives were asked to rate perceptions toward barriers to teleretinal DR screening and AI implementation using a 5-point Likert scale. Results: Four UC campuses had active DR teleretinal screening programs at the time of survey and screened between 246 and 2,123 patients at 1-6 clinics per campus. Sites reported variation between poor-quality photos (<5% to 15%) and average image interpretation time (1-5 days). Patient education, resource availability, and infrastructural support were identified as barriers to DR teleretinal screening. Cost and integration into existing technology infrastructures were identified as barriers to AI integration in DR screening. Conclusions: Despite the potential to increase access to care, there remain several barriers to widespread implementation of DR teleretinal screening. More research is needed to develop best practices to overcome these barriers.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Telemedicina , Humanos , Retinopatía Diabética/diagnóstico , Inteligencia Artificial , Telemedicina/métodos , Tamizaje Masivo/métodos , Instituciones de Atención Ambulatoria
2.
Ophthalmology ; 129(7): e69-e76, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35157950

RESUMEN

PURPOSE: To validate a vascular severity score as an appropriate output for artificial intelligence (AI) Software as a Medical Device (SaMD) for retinopathy of prematurity (ROP) through comparison with ordinal disease severity labels for stage and plus disease assigned by the International Classification of Retinopathy of Prematurity, Third Edition (ICROP3), committee. DESIGN: Validation study of an AI-based ROP vascular severity score. PARTICIPANTS: A total of 34 ROP experts from the ICROP3 committee. METHODS: Two separate datasets of 30 fundus photographs each for stage (0-5) and plus disease (plus, preplus, neither) were labeled by members of the ICROP3 committee using an open-source platform. Averaging these results produced a continuous label for plus (1-9) and stage (1-3) for each image. Experts were also asked to compare each image to each other in terms of relative severity for plus disease. Each image was also labeled with a vascular severity score from the Imaging and Informatics in ROP deep learning system, which was compared with each grader's diagnostic labels for correlation, as well as the ophthalmoscopic diagnosis of stage. MAIN OUTCOME MEASURES: Weighted kappa and Pearson correlation coefficients (CCs) were calculated between each pair of grader classification labels for stage and plus disease. The Elo algorithm was also used to convert pairwise comparisons for each expert into an ordered set of images from least to most severe. RESULTS: The mean weighted kappa and CC for all interobserver pairs for plus disease image comparison were 0.67 and 0.88, respectively. The vascular severity score was found to be highly correlated with both the average plus disease classification (CC = 0.90, P < 0.001) and the ophthalmoscopic diagnosis of stage (P < 0.001 by analysis of variance) among all experts. CONCLUSIONS: The ROP vascular severity score correlates well with the International Classification of Retinopathy of Prematurity committee member's labels for plus disease and stage, which had significant intergrader variability. Generation of a consensus for a validated scoring system for ROP SaMD can facilitate global innovation and regulatory authorization of these technologies.


Asunto(s)
Retinopatía de la Prematuridad , Inteligencia Artificial , Diagnóstico por Imagen , Edad Gestacional , Humanos , Recién Nacido , Oftalmoscopía/métodos , Reproducibilidad de los Resultados , Retinopatía de la Prematuridad/diagnóstico
3.
J Biomed Inform ; 117: 103745, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33831536

RESUMEN

The COVID-19 pandemic has resulted in a rapidly growing quantity of scientific publications from journal articles, preprints, and other sources. The TREC-COVID Challenge was created to evaluate information retrieval (IR) methods and systems for this quickly expanding corpus. Using the COVID-19 Open Research Dataset (CORD-19), several dozen research teams participated in over 5 rounds of the TREC-COVID Challenge. While previous work has compared IR techniques used on other test collections, there are no studies that have analyzed the methods used by participants in the TREC-COVID Challenge. We manually reviewed team run reports from Rounds 2 and 5, extracted features from the documented methodologies, and used a univariate and multivariate regression-based analysis to identify features associated with higher retrieval performance. We observed that fine-tuning datasets with relevance judgments, MS-MARCO, and CORD-19 document vectors was associated with improved performance in Round 2 but not in Round 5. Though the relatively decreased heterogeneity of runs in Round 5 may explain the lack of significance in that round, fine-tuning has been found to improve search performance in previous challenge evaluations by improving a system's ability to map relevant queries and phrases to documents. Furthermore, term expansion was associated with improvement in system performance, and the use of the narrative field in the TREC-COVID topics was associated with decreased system performance in both rounds. These findings emphasize the need for clear queries in search. While our study has some limitations in its generalizability and scope of techniques analyzed, we identified some IR techniques that may be useful in building search systems for COVID-19 using the TREC-COVID test collections.


Asunto(s)
COVID-19 , Almacenamiento y Recuperación de la Información , Pandemias , Humanos , Análisis Multivariante , SARS-CoV-2
4.
Biomed Microdevices ; 20(1): 4, 2017 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-29170867

RESUMEN

Three-dimensional (3D) printing is an emerging technique in the field of biomedical engineering and electronics. This paper presents a novel biofabrication method of implantable carbon electrodes with several advantages including fast prototyping, patient-specific and miniaturization without expensive cleanroom. The method combines stereolithography in additive manufacturing and chemical modification processes to fabricate electrically conductive carbon electrodes. The stereolithography allows the structures to be 3D printed with very fine resolution and desired shapes. The resin is then chemically modified to carbon using pyrolysis to enhance electrochemical performance. The electrochemical characteristics of 3D printing carbon electrodes are assessed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The specific capacitance of 3D printing carbon electrodes is much higher than the same sized platinum (Pt) electrode. In-vivo electromyography (EMG) recording, 3D printing carbon electrodes exhibit much higher signal-to-noise ratio (40.63 ± 7.73) than Pt electrodes (14.26 ± 6.83). The proposed biofabrication method is envisioned to enable 3D printing in many emerging applications in biomedical engineering and electronics.


Asunto(s)
Electrodos , Impresión Tridimensional , Animales , Carbono/química , Espectroscopía Dieléctrica , Conductividad Eléctrica , Estimulación Eléctrica/instrumentación , Electrodos Implantados , Electromiografía/instrumentación , Diseño de Equipo , Masculino , Ratas Sprague-Dawley , Relación Señal-Ruido , Termogravimetría
5.
Environ Sci Technol ; 49(22): 13094-102, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26489011

RESUMEN

Public water systems are increasingly facing higher bromide levels in their source waters from anthropogenic contamination through coal-fired power plants, conventional oil and gas extraction, textile mills, and hydraulic fracturing. Climate change is likely to exacerbate this in coming years. We estimate bladder cancer risk from potential increased bromide levels in source waters of disinfecting public drinking water systems in the United States. Bladder cancer is the health end point used by the United States Environmental Protection Agency (EPA) in its benefits analysis for regulating disinfection byproducts in drinking water. We use estimated increases in the mass of the four regulated trihalomethanes (THM4) concentrations (due to increased bromide incorporation) as the surrogate disinfection byproduct (DBP) occurrence metric for informing potential bladder cancer risk. We estimate potential increased excess lifetime bladder cancer risk as a function of increased source water bromide levels. Results based on data from 201 drinking water treatment plants indicate that a bromide increase of 50 µg/L could result in a potential increase of between 10(-3) and 10(-4) excess lifetime bladder cancer risk in populations served by roughly 90% of these plants.


Asunto(s)
Bromuros/efectos adversos , Desinfectantes/efectos adversos , Agua Potable/efectos adversos , Neoplasias de la Vejiga Urinaria/etiología , Contaminantes Químicos del Agua/efectos adversos , Humanos , Oportunidad Relativa , Factores de Riesgo , Trihalometanos/efectos adversos , Estados Unidos , Neoplasias de la Vejiga Urinaria/epidemiología
6.
Surv Ophthalmol ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38490454

RESUMEN

A 60-year-old man presented to an outside ophthalmology clinic with 1 month of progressive vision loss in the right eye (OD). Right optic disc edema was noted. Brain and orbit magnetic resonance imaging revealed right optic nerve and left occipital lobe enhancement. He was seen initially by neurology and neurosurgery and subsequently referred to neuro-ophthalmology for consideration of optic nerve biopsy. He was seen 3 months after his initial symptom onset where vision was light perception OD and a relative afferent pupillary defect with optic nerve edema. OS was unremarkable. A lumbar puncture with flow cytometry was negative for multiple sclerosis and lymphoma. At his oculoplastic evaluation for optic nerve biopsy, his vision was noted to be no light perception OD. Optic nerve biopsy demonstrated non-caseating granulomatous inflammation consistent with neurosarcoidosis. The patient was started on high-dose oral steroids with improvement of disc edema, as well as significant improvement in optic nerve and intracranial parenchymal enhancement, although his vision never improved.

7.
Ophthalmol Sci ; 4(1): 100338, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37869029

RESUMEN

Objective: To develop a generative adversarial network (GAN) to segment major blood vessels from retinal flat-mount images from oxygen-induced retinopathy (OIR) and demonstrate the utility of these GAN-generated vessel segmentations in quantifying vascular tortuosity. Design: Development and validation of GAN. Subjects: Three datasets containing 1084, 50, and 20 flat-mount mice retina images with various stains used and ages at sacrifice acquired from previously published manuscripts. Methods: Four graders manually segmented major blood vessels from flat-mount images of retinas from OIR mice. Pix2Pix, a high-resolution GAN, was trained on 984 pairs of raw flat-mount images and manual vessel segmentations and then tested on 100 and 50 image pairs from a held-out and external test set, respectively. GAN-generated and manual vessel segmentations were then used as an input into a previously published algorithm (iROP-Assist) to generate a vascular cumulative tortuosity index (CTI) for 20 image pairs containing mouse eyes treated with aflibercept versus control. Main Outcome Measures: Mean dice coefficients were used to compare segmentation accuracy between the GAN-generated and manually annotated segmentation maps. For the image pairs treated with aflibercept versus control, mean CTIs were also calculated for both GAN-generated and manual vessel maps. Statistical significance was evaluated using Wilcoxon signed-rank tests (P ≤ 0.05 threshold for significance). Results: The dice coefficient for the GAN-generated versus manual vessel segmentations was 0.75 ± 0.27 and 0.77 ± 0.17 for the held-out test set and external test set, respectively. The mean CTI generated from the GAN-generated and manual vessel segmentations was 1.12 ± 0.07 versus 1.03 ± 0.02 (P = 0.003) and 1.06 ± 0.04 versus 1.01 ± 0.01 (P < 0.001), respectively, for eyes treated with aflibercept versus control, demonstrating that vascular tortuosity was rescued by aflibercept when quantified by GAN-generated and manual vessel segmentations. Conclusions: GANs can be used to accurately generate vessel map segmentations from flat-mount images. These vessel maps may be used to evaluate novel metrics of vascular tortuosity in OIR, such as CTI, and have the potential to accelerate research in treatments for ischemic retinopathies. Financial Disclosures: The author(s) have no proprietary or commercial interest in any materials discussed in this article.

8.
Ophthalmol Sci ; 4(4): 100468, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560278

RESUMEN

Purpose: Use of the electronic health record (EHR) has motivated the need for data standardization. A gap in knowledge exists regarding variations in existing terminologies for defining diabetic retinopathy (DR) cohorts. This study aimed to review the literature and analyze variations regarding codified definitions of DR. Design: Literature review and quantitative analysis. Subjects: Published manuscripts. Methods: Four graders reviewed PubMed and Google Scholar for peer-reviewed studies. Studies were included if they used codified definitions of DR (e.g., billing codes). Data elements such as author names, publication year, purpose, data set type, and DR definitions were manually extracted. Each study was reviewed by ≥ 2 authors to validate inclusion eligibility. Quantitative analyses of the codified definitions were then performed to characterize the variation between DR cohort definitions. Main Outcome Measures: Number of studies included and numeric counts of billing codes used to define codified cohorts. Results: In total, 43 studies met the inclusion criteria. Half of the included studies used datasets based on structured EHR data (i.e., data registries, institutional EHR review), and half used claims data. All but 1 of the studies used billing codes such as the International Classification of Diseases 9th or 10th edition (ICD-9 or ICD-10), either alone or in addition to another terminology for defining disease. Of the 27 included studies that used ICD-9 and the 20 studies that used ICD-10 codes, the most common codes used pertained to the full spectrum of DR severity. Diabetic retinopathy complications (e.g., vitreous hemorrhage) were also used to define some DR cohorts. Conclusions: Substantial variations exist among codified definitions for DR cohorts within retrospective studies. Variable definitions may limit generalizability and reproducibility of retrospective studies. More work is needed to standardize disease cohorts. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

9.
Ophthalmol Sci ; 4(3): 100439, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38361912

RESUMEN

Purpose: The murine oxygen-induced retinopathy (OIR) model is one of the most widely used animal models of ischemic retinopathy, mimicking hallmark pathophysiology of initial vaso-obliteration (VO) resulting in ischemia that drives neovascularization (NV). In addition to NV and VO, human ischemic retinopathies, including retinopathy of prematurity (ROP), are characterized by increased vascular tortuosity. Vascular tortuosity is an indicator of disease severity, need to treat, and treatment response in ROP. Current literature investigating novel therapeutics in the OIR model often report their effects on NV and VO, and measurements of vascular tortuosity are less commonly performed. No standardized quantification of vascular tortuosity exists to date despite this metric's relevance to human disease. This proof-of-concept study aimed to apply a previously published semi-automated computer-based image analysis approach (iROP-Assist) to develop a new tool to quantify vascular tortuosity in mouse models. Design: Experimental study. Subjects: C57BL/6J mice subjected to the OIR model. Methods: In a pilot study, vasculature was manually segmented on flat-mount images of OIR and normoxic (NOX) mice retinas and segmentations were analyzed with iROP-Assist to quantify vascular tortuosity metrics. In a large cohort of age-matched (postnatal day 12 [P12], P17, P25) NOX and OIR mice retinas, NV, VO, and vascular tortuosity were quantified and compared. In a third experiment, vascular tortuosity in OIR mice retinas was quantified on P17 following intravitreal injection with anti-VEGF (aflibercept) or Immunoglobulin G isotype control on P12. Main Outcome Measures: Vascular tortuosity. Results: Cumulative tortuosity index was the best metric produced by iROP-Assist for discriminating between OIR mice and NOX controls. Increased vascular tortuosity correlated with disease activity in OIR. Treatment of OIR mice with aflibercept rescued vascular tortuosity. Conclusions: Vascular tortuosity is a quantifiable feature of the OIR model that correlates with disease severity and may be quickly and accurately quantified using the iROP-Assist algorithm. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

10.
J Am Coll Radiol ; 21(6S): S326-S342, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38823954

RESUMEN

Urinary tract infection (UTI) is a frequent infection in childhood. The diagnosis is usually made by history and physical examination and confirmed by urine analysis. Cystitis is infection or inflammation confined to the bladder, whereas pyelonephritis is infection or inflammation of kidneys. Pyelonephritis can cause renal scarring, which is the most severe long-term sequela of UTI and can lead to accelerated nephrosclerosis, leading to hypertension and chronic renal failure. The role of imaging is to guide treatment by identifying patients who are at high risk to develop recurrent UTIs or renal scarring. This document provides initial imaging guidelines for children presenting with first febrile UTI with appropriate response to medical management, atypical or recurrent febrile UTI, and follow-up imaging for children with established vesicoureteral reflux. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision process support the systematic analysis of the medical literature from peer reviewed journals. Established methodology principles such as Grading of Recommendations Assessment, Development, and Evaluation or GRADE are adapted to evaluate the evidence. The RAND/UCLA Appropriateness Method User Manual provides the methodology to determine the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where peer reviewed literature is lacking or equivocal, experts may be the primary evidentiary source available to formulate a recommendation.


Asunto(s)
Medicina Basada en la Evidencia , Sociedades Médicas , Infecciones Urinarias , Humanos , Infecciones Urinarias/diagnóstico por imagen , Estados Unidos , Niño
11.
Clin Chem ; 59(7): 1052-61, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23503723

RESUMEN

BACKGROUND: High-resolution melting of PCR products is an efficient and analytically sensitive method to scan for sequence variation, but detected variants must still be identified. Snapback primer genotyping uses a 5' primer tail complementary to its own extension product to genotype the resulting hairpin via melting. If the 2 methods were combined to analyze the same PCR product, the residual sequencing burden could be reduced or even eliminated. METHODS: The 27 exons and neighboring splice sites of the CFTR [cystic fibrosis transmembrane conductance regulator (ATP-binding cassette sub-family C, member 7)] gene were amplified by the PCR in 39 fragments. Primers included snapback tails for genotyping 7 common variants and the 23 CFTR mutations recommended for screening by the American College of Medical Genetics. After symmetric PCR, the amplicons were analyzed by high-resolution melting to scan for variants. Then, a 5-fold excess of H2O was added to each reaction to produce intramolecular hairpins for snapback genotyping by melting. Each melting step required <10 min. Of the 133 DNA samples analyzed, 51 were from CFTR patient samples or cell lines. RESULTS: As expected, the analytical sensitivity of heterozygote detection in blinded studies was 100%. Snapback genotyping reduced the need for sequencing from 7.9% to 0.5% of PCR products; only 1 amplicon every 5 patients required sequencing to identify nonanticipated rare variants. We identified 2 previously unreported variants: c.3945A>G and c.4243-5C>T. CONCLUSIONS: CFTR analysis by sequential scanning and genotyping with snapback primers is a good match for targeted clinical genetics, for which high analytical accuracy and rapid turnaround times are important.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Cartilla de ADN , Línea Celular Tumoral , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Genotipo , Humanos , Mutación , Reacción en Cadena de la Polimerasa/métodos , Polimorfismo Genético
12.
Int J Comput Assist Radiol Surg ; 18(1): 127-137, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36271214

RESUMEN

PURPOSE: Integrated operating rooms provide rich sources of temporal information about surgical procedures, which has led to the emergence of surgical data science. However, little emphasis has been put on interactive visualization of such temporal datasets to gain further insights. Our goal is to put heterogeneous data sequences in relation to better understand the workflows of individual procedures as well as selected subsets, e.g., with respect to different surgical phase distributions and surgical instrument usage patterns. METHODS: We developed a reusable web-based application design to analyze data derived from surgical procedure recordings. It consists of aggregated, synchronized visualizations for the original temporal data as well as for derived information, and includes tailored interaction techniques for selection and filtering. To enable reproducibility, we evaluated it across four types of surgeries from two openly available datasets (HeiCo and Cholec80). User evaluation has been conducted with twelve students and practitioners with surgical and technical background. RESULTS: The evaluation showed that the application has the complexity of an expert tool (System Usability Score of 57.73) but allowed the participants to solve various analysis tasks correctly (78.8% on average) and to come up with novel hypotheses regarding the data. CONCLUSION: The novel application supports postoperative expert-driven analysis, improving the understanding of surgical workflows and the underlying datasets. It facilitates analysis across multiple synchronized views representing information from different data sources and, thereby, advances the field of surgical data science.


Asunto(s)
Quirófanos , Programas Informáticos , Humanos , Reproducibilidad de los Resultados
13.
J Glaucoma ; 32(3): 151-158, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36877820

RESUMEN

PRCIS: We updated a clinical decision support tool integrating predicted visual field (VF) metrics from an artificial intelligence model and assessed clinician perceptions of the predicted VF metric in this usability study. PURPOSE: To evaluate clinician perceptions of a prototyped clinical decision support (CDS) tool that integrates visual field (VF) metric predictions from artificial intelligence (AI) models. METHODS: Ten ophthalmologists and optometrists from the University of California San Diego participated in 6 cases from 6 patients, consisting of 11 eyes, uploaded to a CDS tool ("GLANCE", designed to help clinicians "at a glance"). For each case, clinicians answered questions about management recommendations and attitudes towards GLANCE, particularly regarding the utility and trustworthiness of the AI-predicted VF metrics and willingness to decrease VF testing frequency. MAIN OUTCOMES AND MEASURES: Mean counts of management recommendations and mean Likert scale scores were calculated to assess overall management trends and attitudes towards the CDS tool for each case. In addition, system usability scale scores were calculated. RESULTS: The mean Likert scores for trust in and utility of the predicted VF metric and clinician willingness to decrease VF testing frequency were 3.27, 3.42, and 2.64, respectively (1=strongly disagree, 5=strongly agree). When stratified by glaucoma severity, all mean Likert scores decreased as severity increased. The system usability scale score across all responders was 66.1±16.0 (43rd percentile). CONCLUSIONS: A CDS tool can be designed to present AI model outputs in a useful, trustworthy manner that clinicians are generally willing to integrate into their clinical decision-making. Future work is needed to understand how to best develop explainable and trustworthy CDS tools integrating AI before clinical deployment.


Asunto(s)
Sistemas de Apoyo a Decisiones Clínicas , Aprendizaje Profundo , Glaucoma , Humanos , Campos Visuales , Inteligencia Artificial , Presión Intraocular , Glaucoma/diagnóstico , Glaucoma/terapia
14.
Pediatr Emerg Care ; 28(3): 272-6, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22391923

RESUMEN

Primary amebic meningoencephalitis (PAM) is a rare but nearly always fatal disease caused by infection with Naegleria fowleri, a thermophilic, free-living ameba found in freshwater environments. Cases of N. fowleri infection have been reported from many of the southern-tier states in the United States, with Florida and Texas disproportionately represented among them. Primary amebic meningoencephalitis presents clinically in a fashion that may be indistinguishable from bacterial and viral meningitis. Unfortunately, because the disease is so rare, PAM is often excluded from the differential diagnosis of children with meningitis resulting in delayed diagnostic and therapeutic efforts.Pediatric acute care practitioners in emergency departments, general pediatric wards, and critical care units, especially those practicing in the southern United States, should be familiar with the risk factors for acquisition of PAM, its clinical presentation, and the fact that common empiric treatment of bacterial meningitis will not treat N. fowleri. Herein, we present the case of an adolescent who died of PAM and review the (a) epidemiology, (b) pathophysiology, (c) available diagnostic modalities, (d) treatment options, and (e) outcomes of patients treated for N. fowleri infection of the central nervous system.


Asunto(s)
Amebiasis/diagnóstico , Infecciones Protozoarias del Sistema Nervioso Central/diagnóstico , Naegleria fowleri/aislamiento & purificación , Adolescente , Amebiasis/microbiología , Amebiasis/fisiopatología , Amebiasis/terapia , Infecciones Protozoarias del Sistema Nervioso Central/microbiología , Infecciones Protozoarias del Sistema Nervioso Central/fisiopatología , Infecciones Protozoarias del Sistema Nervioso Central/terapia , Humanos , Masculino
15.
Front Med (Lausanne) ; 9: 906554, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36004369

RESUMEN

Advances in technology, including novel ophthalmic imaging devices and adoption of the electronic health record (EHR), have resulted in significantly increased data available for both clinical use and research in ophthalmology. While artificial intelligence (AI) algorithms have the potential to utilize these data to transform clinical care, current applications of AI in ophthalmology have focused mostly on image-based deep learning. Unstructured free-text in the EHR represents a tremendous amount of underutilized data in big data analyses and predictive AI. Natural language processing (NLP) is a type of AI involved in processing human language that can be used to develop automated algorithms using these vast quantities of available text data. The purpose of this review was to introduce ophthalmologists to NLP by (1) reviewing current applications of NLP in ophthalmology and (2) exploring potential applications of NLP. We reviewed current literature published in Pubmed and Google Scholar for articles related to NLP and ophthalmology, and used ancestor search to expand our references. Overall, we found 19 published studies of NLP in ophthalmology. The majority of these publications (16) focused on extracting specific text such as visual acuity from free-text notes for the purposes of quantitative analysis. Other applications included: domain embedding, predictive modeling, and topic modeling. Future ophthalmic applications of NLP may also focus on developing search engines for data within free-text notes, cleaning notes, automated question-answering, and translating ophthalmology notes for other specialties or for patients, especially with a growing interest in open notes. As medicine becomes more data-oriented, NLP offers increasing opportunities to augment our ability to harness free-text data and drive innovations in healthcare delivery and treatment of ophthalmic conditions.

16.
Transl Vis Sci Technol ; 11(11): 20, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36441131

RESUMEN

Purpose: To describe the methods involved in processing and characteristics of an open dataset of annotated clinical notes from the electronic health record (EHR) annotated for glaucoma medications. Methods: In this study, 480 clinical notes from office visits, medical record numbers (MRNs), visit identification numbers, provider names, and billing codes were extracted for 480 patients seen for glaucoma by a comprehensive or glaucoma ophthalmologist from January 1, 2019, to August 31, 2020. MRNs and all visit data were de-identified using a hash function with salt from the deidentifyr package. All progress notes were annotated for glaucoma medication name, route, frequency, dosage, and drug use using an open-source annotation tool, Doccano. Annotations were saved separately. All protected health information (PHI) in progress notes and annotated files were de-identified using the published de-identifying algorithm Philter. All progress notes and annotations were manually validated by two ophthalmologists to ensure complete de-identification. Results: The final dataset contained 5520 annotated sentences, including those with and without medications, for 480 clinical notes. Manual validation revealed 10 instances of remaining PHI which were manually corrected. Conclusions: Annotated free-text clinical notes can be de-identified for upload as an open dataset. As data availability increases with the adoption of EHRs, free-text open datasets will become increasingly valuable for "big data" research and artificial intelligence development. This dataset is published online and publicly available at https://github.com/jche253/Glaucoma_Med_Dataset. Translational Relevance: This open access medication dataset may be a source of raw data for future research involving big data and artificial intelligence research using free-text.


Asunto(s)
Registros Electrónicos de Salud , Glaucoma , Humanos , Inteligencia Artificial , Glaucoma/tratamiento farmacológico , Glaucoma/epidemiología , Macrodatos , Registros
17.
Ophthalmol Sci ; 2(2): 100126, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36249693

RESUMEN

Purpose: Developing robust artificial intelligence (AI) models for medical image analysis requires large quantities of diverse, well-chosen data that can prove challenging to collect because of privacy concerns, disease rarity, or diagnostic label quality. Collecting image-based datasets for retinopathy of prematurity (ROP), a potentially blinding disease, suffers from these challenges. Progressively growing generative adversarial networks (PGANs) may help, because they can synthesize highly realistic images that may increase both the size and diversity of medical datasets. Design: Diagnostic validation study of convolutional neural networks (CNNs) for plus disease detection, a component of severe ROP, using synthetic data. Participants: Five thousand eight hundred forty-two retinal fundus images (RFIs) collected from 963 preterm infants. Methods: Retinal vessel maps (RVMs) were segmented from RFIs. PGANs were trained to synthesize RVMs with normal, pre-plus, or plus disease vasculature. Convolutional neural networks were trained, using real or synthetic RVMs, to detect plus disease from 2 real RVM test datasets. Main Outcome Measures: Features of real and synthetic RVMs were evaluated using uniform manifold approximation and projection (UMAP). Similarities were evaluated at the dataset and feature level using Fréchet inception distance and Euclidean distance, respectively. CNN performance was assessed via area under the receiver operating characteristic curve (AUC); AUCs were compared via bootstrapping and Delong's test for correlated receiver operating characteristic curves. Confusion matrices were compared using McNemar's chi-square test and Cohen's κ value. Results: The CNN trained on synthetic RVMs showed a significantly higher AUC (0.971; P = 0.006 and P = 0.004) and classified plus disease more similarly to a set of 8 international experts (κ = 0.922) than the CNN trained on real RVMs (AUC = 0.934; κ = 0.701). Real and synthetic RVMs overlapped, by plus disease diagnosis, on the UMAP manifold, showing that synthetic images spanned the disease severity spectrum. Fréchet inception distance and Euclidean distances suggested that real and synthetic RVMs were more dissimilar to one another than real RVMs were to one another, further suggesting that synthetic RVMs were distinct from the training data with respect to privacy considerations. Conclusions: Synthetic datasets may be useful for training robust medical AI models. Furthermore, PGANs may be able to synthesize realistic data for use without protected health information concerns.

18.
J Am Coll Radiol ; 19(5S): S121-S136, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35550797

RESUMEN

Imaging plays an integral role in the evaluation of suspected musculoskeletal infections in children, not only in the accurate identification of infection such as osteomyelitis or septic arthritis, but also in guiding management. Various diagnostic modalities serve different purposes in the assessment of suspected pediatric musculoskeletal infections. The purpose of this document is to provide imaging guidance in the most frequently encountered clinical scenarios in which osteomyelitis and/or septic arthritis are suspected, outside of the axial skeleton. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion.


Asunto(s)
Artritis Infecciosa , Osteomielitis , Artritis Infecciosa/diagnóstico por imagen , Niño , Medicina Basada en la Evidencia , Humanos , Osteomielitis/diagnóstico por imagen , Esqueleto , Sociedades Médicas , Estados Unidos
19.
Ann Otol Rhinol Laryngol ; 130(5): 459-466, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32917109

RESUMEN

OBJECTIVES: Nerve transfer (NT) and free gracilis muscle transfer (FGMT) are procedures for reanimation of the paralyzed face. Assessing the surgical outcomes of these procedures is imperative when evaluating the effectiveness of these interventions, especially when establishing a new center focused on the treatment of patients with facial paralysis. We desired to discuss the factors to consider when implementing a facial nerve center and the means by which the specialist can assess and analyze outcomes. METHODS: Patients with facial palsy secondary to multiple etiologies, including cerebellopontine angle tumors, head and neck carcinoma, and trauma, who underwent NT or FGMT between 2014 and 2019 were included. Primary outcomes were facial symmetry and smile excursion, calculated using FACE-gram and Emotrics software. Subjective quality of life outcomes, including the Facial Clinimetric Evaluation (FaCE) Scale and Synkinesis Assessment Questionnaire (SAQ), were also assessed. RESULTS: 14/22 NT and 6/6 FGMT patients met inclusion criteria having both pre-and postoperative photo documentation. NT increased oral commissure excursion from 0.4 mm (SD 5.3) to 2.9 mm (SD 6.8) (P = 0.05), and improved symmetry of excursion (P < 0.001) and angle (P < 0.001). FGMT increased oral commissure excursion from -1.4 mm (SD 3.9) to 2.1 mm (SD 3.7), (P = 0.02), and improved symmetry of excursion (P < 0.001). FaCE scores improved in NT patients postoperatively (P < 0.001). CONCLUSIONS: Measuring outcomes, critical analyses, and a multidisciplinary approach are necessary components when building a facial nerve center. At our emerging facial nerve center, we found NT and FGMT procedures improved smile excursion and symmetry, and improved QOL following NT in patients with facial palsy secondary to multiple etiologies.


Asunto(s)
Centros Médicos Académicos , Nervio Facial/cirugía , Parálisis Facial , Músculo Grácil/cirugía , Transferencia de Nervios/métodos , Calidad de Vida , Centros Médicos Académicos/ética , Centros Médicos Académicos/métodos , Centros Médicos Académicos/organización & administración , Adulto , Expresión Facial , Enfermedades del Nervio Facial/complicaciones , Parálisis Facial/etiología , Parálisis Facial/psicología , Parálisis Facial/cirugía , Femenino , Humanos , Comunicación Interdisciplinaria , Masculino , Modelos Organizacionales , Oregon , Objetivos Organizacionales , Evaluación de Resultado en la Atención de Salud , Procedimientos de Cirugía Plástica/métodos , Estudios Retrospectivos , Sonrisa
20.
AMIA Annu Symp Proc ; 2021: 773-782, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35308943

RESUMEN

Accuracy of medication data in electronic health records (EHRs) is crucial for patient care and research, but many studies have shown that medication lists frequently contain errors. In contrast, physicians often pay more attention to the clinical notes and record medication information in them. The medication information in notes may be used for medication reconciliation to improve the medication lists' accuracy. However, accurately extracting patient's current medications from free-text narratives is challenging. In this study, we first explored the discrepancies between medication documentation in medication lists and progress notes for glaucoma patients by manually reviewing patients' charts. Next, we developed and validated a named entity recognition model to identify current medication and adherence from progress notes. Lastly, a prototype tool for medication reconciliation using the developed model was demonstrated. In the future, the model has the potential to be incorporated into the EHR system to help with realtime medication reconciliation.


Asunto(s)
Glaucoma , Procesamiento de Lenguaje Natural , Documentación , Registros Electrónicos de Salud , Glaucoma/tratamiento farmacológico , Humanos , Conciliación de Medicamentos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA