Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 259: 119504, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38945514

RESUMEN

While treating zinc-containing wastewater, recovering zinc for reuse as a secondary resource has significant environmental and economic benefits. Herein, based on the alkali-activated tourmaline tailings geopolymers (TTG) after adsorption of zinc ions (Zn (II)), a series of new composites with in-situ construction ZnS nanoparticles on TTG (ZnS/TTG) were synthesized, and used as photocatalysts for the photodegradation of tetracycline hydrochloride (TCH) in solution. Specifically, ZnS nanoparticles were uniformly and stably distributed in the layered structure of TTG, interweaving with each other to generate an interfacial electric field, which could induce more photocarrier generation. Meanwhile, TTG acted as an electron acceptor to accelerate the electron transfer at the interface, thus enhancing the photodegradation activity for TCH. The active radical quenching experiments combined with the ESR indicated that the active species produced during the photocatalytic degradation of TCH by ZnS/TTG composites were •O2- and photogenerated h+. When the initial concentration of Zn (II) was 60 mg/L, the synthesized 60-ZnS/TTG composites (0.5 g/L) reached 91.53% degradation efficiency of TCH (10 mg/L) at pH = 6. Furthermore, the possible pathways and mechanism of 60-ZnS/TTG composites photodegraded TCH were revealed with the aid of degraded intermediates. This report not only proposed valuable references for reusing heavy metal ions and removing TCH from wastewater, but also provided promising ideas for realizing the conversion of used adsorbents into high-efficiency photocatalysts.

2.
J Nanobiotechnology ; 22(1): 138, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555444

RESUMEN

Multidrug-resistant (MDR) Acinetobacter baumannii (A. baumannii) is a formidable pathogen responsible for severe intracranial infections post-craniotomy, exhibiting a mortality rate as high as 71%. Tigecycline (TGC), a broad-spectrum antibiotic, emerged as a potential therapeutic agent for MDR A. baumannii infections. Nonetheless, its clinical application was hindered by a short in vivo half-life and limited permeability through the blood-brain barrier (BBB). In this study, we prepared a novel core-shell nanoparticle encapsulating water-soluble tigecycline using a blend of mPEG-PLGA and PLGA materials. This nanoparticle, modified with a dual-targeting peptide Aß11 and Tween 80 (Aß11/T80@CSs), was specifically designed to enhance the delivery of tigecycline to the brain for treating A. baumannii-induced intracranial infections. Our findings demonstrated that Aß11/T80@CSs nanocarriers successfully traversed the BBB and effectively delivered TGC into the cerebrospinal fluid (CSF), leading to a significant therapeutic response in a model of MDR A. baumannii intracranial infection. This study offers initial evidence and a platform for the application of brain-targeted nanocarrier delivery systems, showcasing their potential in administering water-soluble anti-infection drugs for intracranial infection treatments, and suggesting promising avenues for clinical translation.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Humanos , Tigeciclina/farmacología , Tigeciclina/uso terapéutico , Minociclina/farmacología , Infecciones por Acinetobacter/tratamiento farmacológico , Farmacorresistencia Bacteriana Múltiple , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Agua
3.
Fish Shellfish Immunol ; 142: 109117, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37778738

RESUMEN

Nuclear factor-κB (NF-κB)/Rel is a group of transcription factors that can be activated and regulates various aspects of innate and adaptive immune functions, which play a crucial role in mediating inflammatory responses. Interleukin-10 (IL-10) is a highly pleiotropic cytokine that has a central role in limiting the immune response to pathogens during infection and thereby alleviating damage to the host. This study aims to investigate the function of the Rel gene in virus infection and its regulatory effect on IL-10 in the largemouth bass (Micropterus salmoides). The ORF sequence of MsRel was 1941 bp, containing 646 amino acids with two conserved functional domains, including RHD and IPT domain. In healthy largemouth bass, the mRNA of MsRel was detected in all the tested tissues, including gill, liver, kidney, heart, spleen, intestine, stomach, skin, brain, fin and muscle. The expression of MsRel was induced by challenge with largemouth bass virus (LMBV) or red grouper nervous necrosis virus (RGNNV), as well as treatment with lipopolysaccharide (LPS) or poly (I:C) in vivo. As evidenced by the detection of viral gene mRNA levels, the infectivity of LMBV and morphological cytopathic effect (CPE), we found that overexpression of MsRel inhibited the infection and replication of LMBV, suggesting its antiviral roles in fish. Besides, the promoter analysis was carried out to determine whether MsRel was a regulator of MsIL-10. The results of the luciferase reporter assay indicated that MsRel has a positive regulatory role in MsIL-10 expression. Further analysis revealed that the potential binding sites of MsIL-10 may be located in the MsIL10-5-M (-42 to +8 bp) region of the MsIL-10 promoter. Furthermore, we observed that MsRel enhanced IFN-I and IFN-III promoter activities. Taken together, our findings demonstrated that MsRel affect LMBV infection by regulating the immune responses, and providing a new idea of the mechanisms how Rel regulate the expression of IL-10 in bony fish.


Asunto(s)
Lubina , Infecciones por Virus ADN , Enfermedades de los Peces , Ranavirus , Animales , Interleucina-10/genética , Secuencia de Aminoácidos , Poli I-C/farmacología , Antivirales , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Peces/química , Ranavirus/fisiología , Inmunidad Innata/genética
4.
Fish Shellfish Immunol ; 121: 370-379, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35051562

RESUMEN

Regulatory factor X 5 (RFX 5) is a member of the RFX family, and it forms the transcription factor complex RFX with RFXANK/B and RFXAP. The RFX complex can activate MHC expression by binding to the MHC promoter. However, the regulate mechanism of RFX in fish species is not been fully elucidated. In this study, we investigated the transcriptional regulation of Epinephelus akaara RFX5 (EaRFX5) on EaMHCI, and its effect on immune pathways. The genomic sequence of EaRFX5 was 35,774 bp and consisted of ten exons and nine introns. The length of EaRFX5 ORF sequence is 2,160 bp, encoding 719 amino acids. By qRT-PCR, EaRFX5 was detected constitutively expressed in twelve selected tissues, showing a wide range of expression. EaRFX5 expression parttern in response to poly (I:C), LPS, Zymosan A, SGIV, and NNV challenges showed that EaRFX5 plays a differentiated immunomodulatory role in response to various stimuli in different tissues, and EaRFX5 was most significantly upregulated in the kidney after challenge with SGIV. Subcellular localization assays showed that EaRFX5 is a typical nuclear protein. Based on the in vitro overexpression experiments, EaRFX5 appeared to promote the expression of EaMHCIa gene, interferon signalling pathway and inflammatory cytokine. Luciferase reporter assay showed that the -267 bp to +82 bp region of EaMHCIa promoter was the core region where EaRFX5 modulated. Additionally, point mutations and electrophoretic mobility shift assays indicating M3 is the EaRFX5 binding sites in the EaMHCIa promoter. These results contribute to elucidating the function of EaRFX5 in fish immune response, and provide the first evidence of positive regulation of MHCIa expression by RFX5 in fish.


Asunto(s)
Lubina , Proteínas de Peces/metabolismo , Factores de Transcripción del Factor Regulador X/metabolismo , Animales , Lubina/genética , Lubina/inmunología , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Genes MHC Clase I
5.
Fish Shellfish Immunol ; 130: 380-390, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36150412

RESUMEN

Transcription factor ATF1 is a member of the ATF/CREB family of the CREB subfamily and is involved in physiological processes such as tumorigenesis, organ development, reproduction, cell survival, and apoptosis in mammals. However, studies on ATF1 in fish have been relatively poorly reported, especially on its role in antiviral immunity in fish. In this study, ATF1 from orange-spotted grouper (named EcATF1) were cloned and characterized. Molecular characterization analysis showed that EcATF1 encodes a 307-amino-acid protein, containing PKID and bZIP_CREB1 domains. Homology analysis showed that had the highest homology with E. lanceolatus(88.93%). Tissue expression pattern showed that EcATF1 was extensively distributed in twelve selected tissues, with higher expression in the skin, gill, liver and spleen. Subcellular localization analysis showed that EcATF1 was distributed in the nucleus of GS cells. EcATF1 overexpression inhibits Singapore grouper iridovirus (SGIV) and red-spotted grouper nervous necrosis virus (RGNNV) replication, as evidenced by a diminished degree of CPE induced by SGIV and RGNNV and a reduction in the level of viral gene transcription and viral capsid protein expression. Furthermore, EcATF1 overexpression upregulated interferon pathway-related genes and proinflammatory factors, and increased the promoter activities of IFN, IFN stimulated response element (ISRE), and nuclear factor κB(NFκB). Meanwhile, EcATF1 overexpression positive regulate the MHC-I signaling pathway, and upregulated the promoter activity of MHC-I. Collectively, these data demonstrate that EcATF1 plays an important role during the host antiviral immune response. This study provides insights into the function of ATF1 in the immune system of lower vertebrates.


Asunto(s)
Lubina , Infecciones por Virus ADN , Enfermedades de los Peces , Iridovirus , Nodaviridae , Ranavirus , Secuencia de Aminoácidos , Animales , Antivirales , Proteínas de la Cápside/genética , Proteínas de Peces , Inmunidad Innata/genética , Interferones/genética , Mamíferos/genética , Mamíferos/metabolismo , FN-kappa B/metabolismo , Nodaviridae/fisiología , Ranavirus/fisiología , Alineación de Secuencia
6.
Fish Shellfish Immunol ; 121: 487-497, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35077868

RESUMEN

The classical major histocompatibility complex class I (MHC-Ⅰ) molecule plays a key role in vertebrate immune response for its important functions in antigen presentation and immune regulation. MHC pathway is closely related to many diseases involving autoimmunity, antigen intrusion and inflammation. However, rare literatures about the effect of MHC-I on fish cells apoptosis were reported. In this study, a novel type of MHC-Ⅰα genotype from orange-spotted grouper (named EcMHC-ⅠA*01) were cloned and characterized. It shared a 77% identity to its Epinephelus coioides MHC-Iα homology that has been uploaded to NCBI (ACZ97571.1). Molecular characterization analysis showed that EcMHC-ⅠA*01 encodes a 357-amino-acid protein, containing a signal peptide,α1,α2,α3, Cytoplasmic (Cyt) and Transmembrane (TM) domains. Tissue expression pattern showed that EcMHC-ⅠA*01 was extensively distributed in twelve selected tissues, with higher expression in the gill, intestine and skin. The expression of EcMHC-ⅠA*01 in grouper liver and spleen tissues were significantly induced by different stimuli (Zymosan A, LPS, Ploy I:C, RGNNV and SGIV). Comparing with the EcMHC-ⅠA*01 expression levels induced by Zymosan A, Ploy I:C and RGNNV, the effects induced by SGIV and LPS were more significant. Subcellular localization analysis showed that EcMHC-ⅠA*01 localizes throughout the cytoplasm appeared both diffuse and focal intracellular expression pattern. Overexpression of EcMHC-ⅠA*01 inhibited the CPE progression, the mRNA expression of the SGIV related genes (MCP, LITAF, ICP-18 and VP19) and the protein expression of MCP. Meanwhile, qRT-PCR result showed that EcMHC-ⅠA*01 overexpression upregulated the expression of interferon signaling molecules (IFN-γ, ISG56, MDA5 and MXI) and inflammatory cytokines (IL-1ß, IL-6, TNF-α and TRAF6). In addition, our results showed that overexpression of EcMHC-ⅠA*01 promoted the apoptosis of normal fathead minnow (FHM) cells as well as the apoptosis of FHM cells induced by SGIV. However, there was no significant change in the activity of caspase 3 between control group and EcMHC-ⅠA*01 overexpression group, suggesting that EcMHC-ⅠA*01-induced apoptosis may not depend on the caspase 3 pathway. Taken together, these data in our study provide new insights into the role of MHC-I in antiviral immune response and apoptosis in fish.


Asunto(s)
Lubina , Infecciones por Virus ADN , Enfermedades de los Peces , Genes MHC Clase I , Animales , Apoptosis , Lubina/genética , Lubina/inmunología , Caspasa 3 , Infecciones por Virus ADN/inmunología , Infecciones por Virus ADN/veterinaria , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Genotipo , Iridovirus , Lipopolisacáridos , Filogenia , Zimosan
7.
Small ; 17(19): e2007326, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33783972

RESUMEN

A valid strategy for amplifying the oxygen reduction reaction (ORR) efficiency of non-noble electrocatalyst in both alkaline and acid electrolytes by decorated with a layer of biomass derivative nitrogen-doped carbon (NPC) is proposed. Herein, a top-down strategy for the generally fabricating NPC matrix decorated with trace of metal oxides nanoparticles (FeOx NPs) by a dual-template assisted high-temperature pyrolysis process is reported. A high-activity FeOx /FeNC (namely Hemin/NPC-900) ORR electrocatalyst is prepared via simply carbonizing the admixture of Mg5 (OH)2 (CO3 )4 and NaCl as dual-templates, melamine and acorn shells as nitrogen and carbon source, hemin as a natural iron and nitrogen source, respectively. Owing to its unique 3D porous construction, large BET areas (819.1 m2 ∙g-1 ), and evenly dispersed active sites (FeNx , CN, and FeO parts), the optimized Hemin/NPC-900 catalyst displays comparable ORR catalytic activities, remarkable survivability to methanol, and preferable long-term stability in both alkali and acid electrolyte compared with benchmark Pt/C. More importantly, density function theory computations certify that the interaction between Fe3 O4 nanoparticles and arm-GN (graphitic N at armchair edge) active sites can effectually promote ORR electrocatalytic performance by a lower overpotential of 0.81 eV. Accordingly, the research provides some insight into design of low-cost non-precious metal ORR catalysts in theory and practice.


Asunto(s)
Carbono , Oxígeno , Biomasa , Catálisis , Oxidación-Reducción , Porosidad
8.
Fish Shellfish Immunol ; 112: 31-37, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33609701

RESUMEN

The red-spotted grouper, Epinephelus akaara, has been cultured widely in China, and in several countries of Southeast Asia, due to its important economic value. However, in recent years the outbreak of disease caused by red-spotted grouper nervous necrosis virus (RGNNV) has caused mass mortality in the stage of the grouper lifecycle from fry to juvenile, resulting in considerable economic loss in commercial aquaculture. However, the molecular mechanism underlying anti-RGNNV infection in red-spotted grouper has never been fully understood. To identify the anti-RGNNV related markers and candidate genes, we performed a genome-wide association study (GWAS) on a natural population of 100 individuals for a full-genome screen of the red-spotted grouper. In this research, 36,311 single, high quality nucleotide polymorphisms (SNPs) were developed. Two significantly associated SNPs and three suggestively associated SNPs were identified at the genome level. From these identified SNPs, five candidate genes were annotated: EPHA7, Osbpl2, GPC5, CDH4 and Pou3f1. These genes are involved in nervous system development, retinal formation, and lipid metabolism regulation. In combination with studies on the characteristics of NNV infection, it was speculated that in the fry stage of the grouper lifecycle, the immune system is not fully developed. Therefore, improved resistance to RGNNV may come through regulating nervous system development or lipid metabolism related pathways. In addition, the genotypes of SNPs associated with disease-resistant traits were analyzed. The markers and genes obtained in this study may facilitate a marker-assisted selection for red-spotted grouper aiming at disease resistance to RGNNV.


Asunto(s)
Lubina/genética , Lubina/inmunología , Enfermedades de los Peces/inmunología , Proteínas de Peces/genética , Estudio de Asociación del Genoma Completo/veterinaria , Animales , Enfermedades de los Peces/genética , Enfermedades de los Peces/virología , Proteínas de Peces/inmunología , Nodaviridae/fisiología , Polimorfismo de Nucleótido Simple/inmunología , Infecciones por Virus ARN/genética , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/veterinaria , Infecciones por Virus ARN/virología
9.
J Asian Nat Prod Res ; 23(8): 724-730, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34253100

RESUMEN

Three new flavonoid glycosides, embeliaflavosides A-C (1-3), together with eight known flavonoid glycosides (4-11), were isolated from the fruits of Embelia ribes. Their structures were established based on the analyses of spectroscopic data. Compounds 1-11 were evaluated for antioxidant and α-glucosidase inhibitory activities. The results revealed that compounds 1-11 owned significant ABTS radical scavenging activity with IC50 values of 2.52-9.78 µM, and DPPH scavenging activity with IC50 values of 7.56-26.47 µM, respectively. However, α-glucosidase inhibition assay indicated that all the isolates were inactive.[Formula: see text].


Asunto(s)
Embelia , Ribes , Antioxidantes/farmacología , Embelia/metabolismo , Flavonoides/farmacología , Frutas , Inhibidores de Glicósido Hidrolasas/farmacología , Glicósidos/farmacología , Estructura Molecular , Extractos Vegetales , Ribes/metabolismo , alfa-Glucosidasas/metabolismo
10.
J Cell Biochem ; 121(1): 743-754, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31478239

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC), a common malignancy originated from the digestive system worldwide, has a poor clinical outcome. SPOCK1 is a widely investigated member of the Ca2+ -binding proteoglycan family and functions as an essential driver in several cancers. However, the complex regulatory role of SPOCK1 in PDAC is unclear. Bioinformatics analysis predicted an interrelationship between increased SPOCK1 expression and the clinical characteristics of patients with PDAC. The SPOCK1 expression levels in fresh tissue samples were confirmed, and SPOCK1 expression was then knocked down by lentivirus-mediated short hairpin RNA. Cell proliferation, metastasis, and apoptosis were detected through Cell Counting Kit-8, colony formation assays, invasion and migration assays, flow cytometric analysis, quantitative real-time polymerase chain reaction, and Western blot experiment. On the basis of the Cancer Genome Atlas database, we found a significantly higher level of SPOCK1 in PDAC than in adjacent nontumor tissues. Patients with PDAC with high SPOCK1 expression exhibited shorter overall survival time, as well as disease-free survival time. The knockdown of SPOCK1 significantly decreased the proliferation and metastasis of PCNA-1 and MIA PaCa-2 cells. Moreover, the knockdown of SPOCK1 led to cell cycle arrest in G0/G1 phase and increased the proportion of apoptotic PDAC cells by regulating members of the caspase and Bcl-2 families. Our data proved that SPOCK1 is a critical regulator of tumor proliferation and metastasis in PDAC cells. Therefore, SPOCK1 might be a potential prognostic and therapeutic target molecule in PDAC.


Asunto(s)
Apoptosis , Biomarcadores de Tumor/metabolismo , Carcinoma Ductal Pancreático/secundario , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas/patología , Proteoglicanos/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Biomarcadores de Tumor/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Ciclo Celular , Movimiento Celular , Femenino , Humanos , Masculino , Ratones , Ratones Desnudos , Persona de Mediana Edad , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Pronóstico , Proteoglicanos/genética , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
11.
J Cell Biochem ; 121(12): 4772-4784, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32100921

RESUMEN

Breast cancer is a common malignant tumor suffered predominantly by women worldwide, which results in serious levels of morbidity and mortality. To control the effects of the cancer, it is critically important to elucidate the pathophysiological processes by which it occurs and develops. Reports have demonstrated that long noncoding RNAs perform a critical role in the development and metastasis of cancers. The lncRNA TTN-AS1 is considered carcinogenic. Nevertheless, the importance and biological functions of TTN-AS1 in breast cancer require greater exploration. In the current paper, we observed that TTN-AS1 expression was significantly upregulated in breast cancer tissues/cells compared with those that are healthy. TTN-AS1 enhanced the proliferation, migration, invasion, and epithelial-mesenchymal transformation of breast cancer cells. Furthermore, a direct target of TTN-AS1, miR-139-5p was negatively regulated. In addition, zinc finger E-box binding homeobox 1 (ZEB1) is an important nuclear transcription factor, the expression of which is increased in multiple tumors. Here, we also found that ZEB1 is a target of miR-139-5p, of which TTN-AS1 could regulate the expression through competition with miR-139-5p. That is, TTN-AS1 promoted proliferation and invasion of breast cancer cells by interaction with the miR-139-5p/ZEB1 axis. In conclusion, the present study aimed to illustrate the significance of TTN-AS1 in breast cancer metastasis and contribute to potentially innovative strategies for its treatment.

12.
Fish Shellfish Immunol ; 102: 257-266, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32315742

RESUMEN

Peroxisome proliferative-activated receptor α (PPARα) belongs to the superfamily of nuclear receptors (NR). Studies have demonstrated that PPARα functions in energy metabolism, hepatic function, immune response, cell cycle, and apoptosis. In teleost fish, few studies have investigated the role of PPARα in the immune response. In this study, the grouper PPARα gene (EcPPARα) was investigated for its role in viral infection. The open reading frame of EcPPARα encoded a protein of 469 amino acids and contained an N-terminal domain (NTD), a DNA-binding domain (DBD), a hinge region, and a C-terminal ligand-binding domain (LBD). Phylogenetic analysis revealed that EcPPARα was most closely related to homologous genes in Sander lucioperca and Perca flavescens. Upon challenge with SGIV (Singapore grouper iridovirus) and RGNNV (Red-spotted grouper nervous necrosis virus), EcPPARα expression levels were significantly upregulated in different tissues. Subcellular localization analysis showed that the EcPPARα protein localized throughout the cytoplasm and nucleus with diffuse intracellular expression patterns, which is consistent with the localization pattern of mammalian PPARs. Based on morphological observation of cytopathic effect (CPEs), viral gene expression mRNAs, and virus titer assays, the results presented here showed that an overexpression of EcPPARα promoted SGIV production in grouper spleen cells. Overexpression of EcPPARα significantly inhibited the expression of several cytokines, including interferon-related genes (IFN-γ, ISG15, MXI, MXII, MAVS and MDA5), inflammatory cytokines (IL-1ß, IL-6, IL-8, TNF-α) and Toll like receptor adaptors (TRAF6 and MyD88). Luciferase activity of IFN-α, IFN-γ, ISRE and NF-κB promoters was also significantly decreased in EcPPARα overexpression cells. Due to these detected interferon-related genes and inflammatory cytokines play important antiviral effect against SGIV in grouper, we speculated that the promotion effect of EcPPARα on SGIV replication may be caused by down-regulation of interferon and inflammatory response. In addition, through apoptotic body observation, capspase-3 activity detection, and flow cytometry analysis, it was found that overexpression of EcPPARα promoted SGIV-induced apoptosis in fathead minnow (FHM) cells. These data may increase an understanding of the role of PPARα in fish antiviral immune responses and apoptosis.


Asunto(s)
Lubina/genética , Lubina/inmunología , Enfermedades de los Peces/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , PPAR alfa/genética , PPAR alfa/inmunología , Secuencia de Aminoácidos , Animales , Infecciones por Virus ADN/inmunología , Infecciones por Virus ADN/veterinaria , Proteínas de Peces/química , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Perfilación de la Expresión Génica/veterinaria , Nodaviridae/fisiología , PPAR alfa/química , Filogenia , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/veterinaria , Ranavirus/fisiología , Alineación de Secuencia/veterinaria
13.
Fish Shellfish Immunol ; 92: 500-507, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31247318

RESUMEN

Mitogen-activated protein kinase 6 (MKK6) is one of the major important central regulatory proteins response to environmental and physiological stimuli. In this study, a novel MKK6, EcMKK6, was isolated from Epinephelus coioides, an economically important cultured fish in China and Southeast Asian counties. The open reading frame (ORF) of EcMKK6 is 1077 bp encoding 358 amino acids. EcMKK6 contains a serine/threonine protein kinase (S_TKc) domain, a tyrosine kinase catalytic domain, a conserved dual phosphorylation site in the SVAKT motif and a conserved DVD domain. By in situ hybridization (ISH) with Digoxigenin-labeled probe, EcMKK6 mainly located at the cytoplasm of cells, and a little appears in the nucleus. EcMKK6 mRNA can be detected in all eleven tissues examined, but the expression level is different in these tissues. After challenge with Vibrio alginolyticus and Singapore grouper iridovirus (SGIV), the transcription level of EcMKK6 was apparently up-regulated in the tissues examined. The data demonstrated that the sequence and the characters of EcMKK6 were conserved, EcMKK6 showed tissue-specific expression profiles in healthy grouper, and the expression was significantly varied after pathogen infection, indicating that EcMKK6 may play important roles in E. coioides during pathogen-caused inflammation.


Asunto(s)
Lubina/genética , Lubina/inmunología , Enfermedades de los Peces/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , MAP Quinasa Quinasa 6/genética , MAP Quinasa Quinasa 6/inmunología , Secuencia de Aminoácidos , Animales , Infecciones por Virus ADN/inmunología , Infecciones por Virus ADN/veterinaria , Proteínas de Peces/química , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Perfilación de la Expresión Génica/veterinaria , MAP Quinasa Quinasa 6/química , Filogenia , Ranavirus/fisiología , Alineación de Secuencia/veterinaria , Vibriosis/inmunología , Vibriosis/veterinaria , Vibrio alginolyticus/fisiología
14.
Org Biomol Chem ; 17(19): 4843-4849, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31033976

RESUMEN

Herein, we report direct synthesis of 1-N-vinyl-1,2,3-triazoles via silver-mediated three-component cycloaddition reaction of phenylacetylenes, trimethylsilylazide, and 1,3-dicarbonyl compounds. The synthetic protocol proceeds with operational simplicity, good substrate and functional group compatibility, and easily available feedstocks, and without the need for pre-installation of vinylazide precursors, and offers a practical method for the efficient elaboration of triazole derivatives.

15.
Plant Dis ; 103(10): 2536-2540, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31424998

RESUMEN

Fusarium head blight, also called scab, is caused by Fusarium graminearum and is one of the most important destructive diseases of wheat. The frequency of carbendazim resistance in 1,132 isolates of F. graminearum recovered from fields in different regions of Henan Province in 2016, 2017, and 2018 was determined. A total of 31 F. graminearum isolates resistant to carbendazim were detected, including 30 moderately resistant isolates and one highly resistant isolate. The frequency of resistance of F. graminearum isolates to carbendazim was 2.7%. The range of effective concentration (EC50) values of 1,101 sensitive isolates and 30 moderately resistant isolates was 0.08 to 0.98 µg ml-1 and 2.73 to 13.28 µg ml-1, respectively. The mean ± SD EC50 value was 0.55 ± 0.13 µg ml-1 and 5.61 ± 2.58 µg ml-1, respectively. The EC50 value of the highly resistant isolate was 21.12 µg ml-1. Point mutation types of the carbendazim-resistant isolates were characterized by cloning the ß2-tubulin gene of 31 resistant isolates. Three point mutation types at amino acids F167Y, E198Q, and E198L in the ß2-tubulin gene of resistant isolates were identified. Among 31 resistant isolates, the frequency of point mutation types in F167Y, E198Q, and E198L of the ß2-tubulin gene was 71.0, 25.8, and 3.2%, respectively. The data indicate that F. graminearum has developed resistance to carbendazim in Henan Province, and single point mutations at amino acid F167Y were the predominant type of mutation detected.


Asunto(s)
Bencimidazoles , Carbamatos , Farmacorresistencia Fúngica , Fusarium , Triticum , Bencimidazoles/farmacología , Carbamatos/farmacología , Farmacorresistencia Fúngica/genética , Fungicidas Industriales , Fusarium/efectos de los fármacos , Fusarium/genética , Genes de Plantas/genética , Mutación Puntual , Triticum/microbiología , Tubulina (Proteína)/genética
16.
Appl Opt ; 57(15): 4202-4210, 2018 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-29791394

RESUMEN

This paper presents an optical method and system for contactless measurement of the mass flow rate of melts by digital cameras. The proposed method is based on reconstruction of melt stream geometry and flow velocity calculation by cross correlation, and is very cost-effective due its modest hardware requirements. Using a laboratory test rig with a small inductive melting pot and reference mass flow rate measurement by weighing, the proposed method was demonstrated to have an excellent dynamic response (0.1 s order of magnitude) while producing deviations from the reference of about 5% in the steady-state flow regime. Similar results were obtained in an industrial stone wool production line for two repeated measurements. Our method was tested in a wide range of melt flow rates (0.05-1.2 kg/s) and did not require very fast cameras (120 frames per second would be sufficient for most industrial applications).

17.
Exp Mol Pathol ; 97(2): 191-201, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25036402

RESUMEN

OBJECTIVE: Jun activation domain-binding protein 1 (Jab1) was overexpressed in breast cancer, which was involved in degradation of the cyclin-dependent kinase inhibitor p27(Kip1). The objective of this study was to examine the effect of brain specific kinase 1 (BRSK1) expression on Jab1 over-expression and related signaling pathway in breast cancer. METHODS: Immunohistochemical analysis was performed in 95 human breast carcinoma samples and the data were correlated with clinicopathologic features. Furthermore, Western blot analysis was performed for BRSK1 and Jab1 in breast carcinoma samples and cell lines to evaluate their protein levels and molecular interaction. RESULTS: We found that the cytoplasmic BRSK1 expression was inversely associated with Jab1 expression (P<0.01) and correlated significantly with histologic grade (P=0.006), however nuclear BRSK1 expression couldn't obtain similar results. Kaplan-Meier analysis revealed that survival curves of low versus high expressers of cytoplasmic BRSK1 and Jab1 showed a highly significant separation in breast cancer (P<0.01). While in vitro, following release of breast cancer cell lines from serum starvation, the expression of Jab1, phosphor-Akt (p-Akt) was up-regulated, whereas BRSK1 and p27(Kip1) were decreased. Treatment of phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 could diminish Jab1 expression but increase BRSK1 expression. In addition, we employed siRNA technique to knock down Jab1 and/or BRSK1 expression and observed their effects on MDA-MB-231 cell growth. CONCLUSIONS: BRSK1 is a novel tumor suppressor in breast cancer which inversely correlated with Jab1 expression, may involve in the restoring Jab1-induced suppression of p27(Kip1) and may regulate cell cycle through the PI3K/Akt pathway.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/metabolismo , Carcinoma/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptido Hidrolasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Adulto , Biomarcadores de Tumor/genética , Neoplasias de la Mama/diagnóstico , Complejo del Señalosoma COP9 , Carcinoma/diagnóstico , Cromonas/farmacología , Citoplasma/metabolismo , Estabilidad de Enzimas , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Células MCF-7 , Persona de Mediana Edad , Morfolinas/farmacología , Péptido Hidrolasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Pronóstico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
18.
Exp Mol Pathol ; 96(2): 188-94, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24509166

RESUMEN

Adenylate cyclase-associated protein 1 (CAP1) is a conserved protein that was found to be up-regulated in breast cancer and related to the migration of breast cancer. We verified its roles in breast cancer specimens and cell lines. In our results, 71 of 100 specimens of breast cancer showed high levels of CAP1 by immunohistochemistry. Associated with statistical analysis, we saw that CAP1 was related to the grade of breast cancer. In MDA-MB-231, the expression of CAP1 was the highest and by knocking down the expression of CAP1 in MDA-MB-231, its ability for proliferating and migrating apparently decreased and induced changes in morphology, which were related to the arrangement of F-actin. Therefore, CAP1 might be a potential molecular targeted therapy for surgery and immune treatment.


Asunto(s)
Neoplasias de la Mama/genética , Proteínas de Ciclo Celular/genética , Movimiento Celular/genética , Proliferación Celular , Proteínas del Citoesqueleto/genética , Proteínas de Ciclo Celular/biosíntesis , Línea Celular Tumoral , Proteínas del Citoesqueleto/biosíntesis , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Terapia Molecular Dirigida
19.
J Immunother Cancer ; 12(6)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926151

RESUMEN

BACKGROUND: Lung metastasis is the primary cause of breast cancer-related mortality. Neutrophil extracellular traps (NETs) are involved in the progression of breast cancer. However, the mechanism of NET formation is not fully understood. This study posits that tumor cell-released autophagosomes (TRAPs) play a crucial role in this process. METHODS: TRAPs were isolated from breast cancer cell lines to analyze their impact on NET formation in both human and mouse neutrophils. The study used both in vitro and in vivo models, including Toll-like receptor 4 (TLR4-/-) mice and engineered breast cancer cell lines. Immunofluorescence, ELISA, Western blotting, RNA sequencing, and flow cytometry were employed to dissect the signaling pathways leading to NET production and to explore their immunosuppressive effects, particularly focusing on the impact of NETs on T-cell function. The therapeutic potential of targeting TRAP-induced NETs and their immunosuppressive functions was evaluated using DNase I and αPD-L1 antibodies. Clinical relevance was assessed by correlating circulating levels of TRAPs and NETs with lung metastasis in patients with breast cancer. RESULTS: This study showed that TRAPs induced the formation of NETs in both human and mouse neutrophils by using the high mobility group box 1 and activating the TLR4-Myd88-ERK/p38 signaling axis. More importantly, PD-L1 carried by TRAP-induced NETs inhibited T-cell function in vitro and in vivo, thereby contributing to the formation of lung premetastatic niche (PMN) immunosuppression. In contrast, Becn1 KD-4T1 breast tumors with decreased circulating TRAPs in vivo reduced the formation of NETs, which in turn attenuated the immunosuppressive effects in PMN and resulted in a reduction of breast cancer pulmonary metastasis in murine models. Moreover, treatment with αPD-L1 in combination with DNase I that degraded NETs restored T-cell function and significantly reduced tumor metastasis. TRAP levels in the peripheral blood positively correlated with NET levels and lung metastasis in patients with breast cancer. CONCLUSIONS: Our results demonstrate a novel role of TRAPs in the formation of PD-L1-decorated NETs, which may provide a new strategy for early detection and treatment of pulmonary metastasis in patients with breast cancer.


Asunto(s)
Autofagosomas , Antígeno B7-H1 , Neoplasias de la Mama , Trampas Extracelulares , Neoplasias Pulmonares , Animales , Humanos , Ratones , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/metabolismo , Neoplasias Pulmonares/secundario , Trampas Extracelulares/metabolismo , Antígeno B7-H1/metabolismo , Autofagosomas/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Línea Celular Tumoral
20.
Arch Physiol Biochem ; : 1-9, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36971486

RESUMEN

Context: Diabetic retinopathy (DR) is a common complication of diabetes mellitus (DM). Circular RNAs (circRNAs) act as key regulators of DR development by regulating inflammation and angiogenesis.Objective: This study aimed to elucidate the function and mechanism of hsa_circ_0000047 in DR.Materials and methods: High glucose (HG) was used to induce human retinal microvascular endothelial cells (hRMECs) to construct a DR model in vitro. Qualitative real-time polymerase chain reaction (qRT-PCR) or western blotting were used to detected the levels of hsa_circ_0000047, miR-6720-5p, and CYB5R2 in DR and HG-indeced hRMECs. Cell functional experiments were performed to detect the change of viability, inflammation, migration, invasion, and angiogenesis of HG-induced hRMECs. Besides, the correlation between miR-6720-5p and hsa_circ_0000047/CYB5R2 was confirmed by luciferase assay and Pearson correlation analysis.Results: hsa_circ_0000047 and CYB5R2 were downregulated in DR, whereas miR-6720-5p was upregulated in DR. Cell functional experiments showed that hsa_circ_0000047 overexpression restrained viability, inflammation, migration, invasion, and angiogenesis of HG-induced hRMECs. Regarding mechanism, hsa_circ_0000047 could sponge miR-6720-5p to regulate CYB5R2 expression in hRMECs. Additionally, CYB5R2 knockdown reversed the effects of hsa_circ_0000047 overexpression on HG-induced hRMECs.Conclusion: Our study revealed that hsa_circ_0000047 alleviated inflammation and angiogenesis in HG-induced hRMECs by targeting the miR-6720-5p/CYB5R2 axis, which may be a novel biomarker for DR therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA