Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Cell ; 186(2): 398-412.e17, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36669474

RESUMEN

Public health studies indicate that artificial light is a high-risk factor for metabolic disorders. However, the neural mechanism underlying metabolic modulation by light remains elusive. Here, we found that light can acutely decrease glucose tolerance (GT) in mice by activation of intrinsically photosensitive retinal ganglion cells (ipRGCs) innervating the hypothalamic supraoptic nucleus (SON). Vasopressin neurons in the SON project to the paraventricular nucleus, then to the GABAergic neurons in the solitary tract nucleus, and eventually to brown adipose tissue (BAT). Light activation of this neural circuit directly blocks adaptive thermogenesis in BAT, thereby decreasing GT. In humans, light also modulates GT at the temperature where BAT is active. Thus, our work unveils a retina-SON-BAT axis that mediates the effect of light on glucose metabolism, which may explain the connection between artificial light and metabolic dysregulation, suggesting a potential prevention and treatment strategy for managing glucose metabolic disorders.


Asunto(s)
Tejido Adiposo Pardo , Hipotálamo , Ratones , Animales , Humanos , Tejido Adiposo Pardo/metabolismo , Hipotálamo/metabolismo , Termogénesis/fisiología , Retina , Células Ganglionares de la Retina , Glucosa/metabolismo
2.
Cell ; 185(17): 3124-3137.e15, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35944541

RESUMEN

During development, melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) become light sensitive much earlier than rods and cones. IpRGCs project to many subcortical areas, whereas physiological functions of these projections are yet to be fully elucidated. Here, we found that ipRGC-mediated light sensation promotes synaptogenesis of pyramidal neurons in various cortices and the hippocampus. This phenomenon depends on activation of ipRGCs and is mediated by the release of oxytocin from the supraoptic nucleus (SON) and the paraventricular nucleus (PVN) into cerebral-spinal fluid. We further characterized a direct connection between ipRGCs and oxytocin neurons in the SON and mutual projections between oxytocin neurons in the SON and PVN. Moreover, we showed that the lack of ipRGC-mediated, light-promoted early cortical synaptogenesis compromised learning ability in adult mice. Our results highlight the importance of light sensation early in life on the development of learning ability and therefore call attention to suitable light environment for infant care.


Asunto(s)
Oxitocina , Células Ganglionares de la Retina , Animales , Encéfalo/metabolismo , Humanos , Ratones , Células Ganglionares de la Retina/fisiología , Opsinas de Bastones/metabolismo
3.
Stem Cells ; 39(7): 959-974, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33662144

RESUMEN

Retinal organoids (ROs) derived from human inducible pluripotent stem cells (hiPSCs) exhibit considerable therapeutic potential. However, current quality control of ROs during in vitro differentiation is largely limited to the detection of molecular markers, often by immunostaining, polymerase chain reaction (PCR) assays and sequencing, often without proper functional assessments. As such, in the current study, we systemically characterized the physiological maturation of photoreceptor-like cells in hiPSC-derived ROs. By performing patch-clamp recordings from photoreceptor-like cells in ROs at distinct differentiation stages (ie, Differentiation Day [D]90, D150, and D200), we determined the electrophysiological properties of the plasma membrane and several characteristic ion channels closely associated with the physiological functions of the photoreceptors. Ionic hallmarks, such as hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and cyclic nucleotide-gated (CNG) channels, matured progressively during differentiation. After D200 in culture, these characteristic currents closely resembled those in macaque or human native photoreceptors. Furthermore, we demonstrated that the hyperpolarization-activated inward current/depolarization-activated outward current ratio (I-120 /I+40 ), termed as the inward-outward current (IOC) ratio hereon, accurately represented the maturity of photoreceptors and could serve as a sensitive indicator of pathological state. Thus, this study provides a comprehensive dataset describing the electrophysiological maturation of photoreceptor-like cells in hiPSC-derived ROs for precise and sensitive quality control during RO differentiation.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Diferenciación Celular , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Organoides/metabolismo , Células Fotorreceptoras , Células Madre Pluripotentes/metabolismo , Retina/metabolismo
4.
Eur Radiol ; 32(8): 5596-5605, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35294587

RESUMEN

OBJECTIVES: Higher static magnetic field (SMF) enables higher imaging capability in magnetic resonance imaging (MRI), which encourages the development of ultra-high field MRIs above 20 T with a prerequisite for safety issues. However, animal tests of ≥ 20 T SMF exposure are very limited. The objective of the current study is to evaluate mice behaviour consequences of 3.5-23.0 T SMF exposure. METHODS: We systematically examined 112 mice for their short- and long-term behaviour responses to a 2-h exposure of 3.5-23.0 T SMFs. Locomotor activity and cognitive functions were measured by five behaviour tests, including balance beam, open field, elevated plus maze, three-chamber social recognition, and Morris water maze tests. RESULTS: Besides the transient short-term impairment of the sense of balance and locomotor activity, the 3.5-23.0 T SMFs did not have long-term negative effects on mice locomotion, anxiety level, social behaviour, or memory. In contrast, we observed anxiolytic effects and positive effects on social and spatial memory of SMFs, which is likely correlated with the significantly increased CaMKII level in the hippocampus region of high SMF-treated mice. CONCLUSIONS: Our study showed that the short exposures to high-field SMFs up to 23.0 T have negligible side effects on healthy mice and may even have beneficial outcomes in mice mood and memory, which is pertinent to the future medical application of ultra-high field SMFs in MRIs and beyond. KEY POINTS: • Short-term exposure to magnetic fields up to 23.0 T is safe for mice. • High-field static magnetic field exposure transiently reduced mice locomotion. • High-field static magnetic field enhances memory while reduces the anxiety level.


Asunto(s)
Campos Magnéticos , Imagen por Resonancia Magnética , Animales , Cognición , Imagen por Resonancia Magnética/efectos adversos , Ratones
5.
Protein Cell ; 14(8): 603-617, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36930538

RESUMEN

Light adaptation enables the vertebrate visual system to operate over a wide range of ambient illumination. Regulation of phototransduction in photoreceptors is considered a major mechanism underlying light adaptation. However, various types of neurons and glial cells exist in the retina, and whether and how all retinal cells interact to adapt to light/dark conditions at the cellular and molecular levels requires systematic investigation. Therefore, we utilized single-cell RNA sequencing to dissect retinal cell-type-specific transcriptomes during light/dark adaptation in mice. The results demonstrated that, in addition to photoreceptors, other retinal cell types also showed dynamic molecular changes and specifically enriched signaling pathways under light/dark adaptation. Importantly, Müller glial cells (MGs) were identified as hub cells for intercellular interactions, displaying complex cell‒cell communication with other retinal cells. Furthermore, light increased the transcription of the deiodinase Dio2 in MGs, which converted thyroxine (T4) to active triiodothyronine (T3). Subsequently, light increased T3 levels and regulated mitochondrial respiration in retinal cells in response to light conditions. As cones specifically express the thyroid hormone receptor Thrb, they responded to the increase in T3 by adjusting light responsiveness. Loss of the expression of Dio2 specifically in MGs decreased the light responsive ability of cones. These results suggest that retinal cells display global transcriptional changes under light/dark adaptation and that MGs coordinate intercellular communication during light/dark adaptation via thyroid hormone signaling.


Asunto(s)
Luz , Retina , Animales , Ratones , Adaptación a la Oscuridad , Células Fotorreceptoras Retinianas Conos/metabolismo , Adaptación Ocular , Neuroglía/fisiología , Comunicación Celular , Hormonas Tiroideas
6.
Eur J Neurosci ; 33(2): 266-75, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21219473

RESUMEN

Ghrelin, an orexigenic hormone, is mainly produced by the stomach and released into the circulation. Ghrelin receptors (growth hormone secretagogue receptors) are expressed throughout the brain, including the hippocampus. The activation of ghrelin receptors facilitates high-frequency stimulation (HFS)-induced long-term potentiation (LTP) in vitro, and also improves learning and memory. Herein, we report that a single infusion of ghrelin into the hippocampus led to long-lasting potentiation of excitatory postsynaptic potentials (EPSPs) and population spikes (PSs) in the dentate gyrus of anesthetized rats. This potentiation was accompanied by a reduction in paired-pulse depression of the EPSP slope, an increase in paired-pulse facilitation of the PS amplitude, and an enhancement of EPSP-spike coupling, suggesting the involvement of both presynaptic and postsynaptic mechanisms. Meanwhile, ghrelin infusion time-dependently increased the phosphorylation of Akt-Ser473, a downstream molecule of phosphoinositide 3-kinase (PI3K). Interestingly, PI3K inhibitors, but not NMDA receptor antagonist, inhibited ghrelin-induced potentiation. Although ghrelin had no effect on the induction of HFS-induced LTP, it prolonged the expression of HFS-induced LTP through extracellular signal-regulated kinase (ERK)1/2. The Morris water maze test showed that ghrelin enhanced spatial memory, and that this was prevented by pretreatment with PI3K inhibitor. Taken together, the findings show that: (i) a single infusion of ghrelin induced a new form of synaptic plasticity by activating the PI3K signaling pathway, without HFS and NMDA receptor activation; (ii) a single infusion of ghrelin also enhanced the maintenance of HFS-induced LTP through ERK activation; and (iii) repetitive infusion of ghrelin enhanced spatial memory by activating the PI3K signaling pathway. Thus, we propose that the ghrelin signaling pathway could have therapeutic value in cognitive deficits.


Asunto(s)
Giro Dentado/enzimología , Giro Dentado/fisiología , Ghrelina/farmacología , Memoria/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Giro Dentado/efectos de los fármacos , Activación Enzimática , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/fisiología , Plasticidad Neuronal/fisiología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal/fisiología , Conducta Espacial/efectos de los fármacos , Conducta Espacial/fisiología
7.
Environ Toxicol ; 25(4): 400-8, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19526529

RESUMEN

Polybrominated diphenyl ethers (PBDEs) are widely used as flame-retardant additives. But the application of PBDEs has been challenged due to their toxicity, especially neurotoxicity. In this study, we investigated the effects of decabrominated diphenyl ether (PBDE 209), the major PBDEs product, on voltage-gated sodium channels (VGSCs) in primary cultured rat hippocampal neurons. Employing the whole-cell patch-clamp technique, we found that PBDE 209 could irreversibly decrease voltage-gated sodium channel currents (I(Na)) in a very low dose and in a concentration-dependent manner. We had systematically explored the effects of PBDE 209 on I(Na) and found that PBDE 209 could shift the activation and inactivation of I(Na) toward hyperpolarizing direction, slow down the recovery from inactivation of I(Na), and decrease the fraction of activated sodium channels. These results suggested that PBDE 209 could affect VGSCs, which may lead to changes in electrical activities and contribute to neurotoxicological damages. We also showed that ascorbic acid, as an antioxidant, was able to mitigate the inhibitory effects of PBDE 209 on VGSCs, which suggested that PBDE 209 might inhibit I(Na) through peroxidation. Our findings provide new insights into the mechanism for the neurological symptoms caused by PBDE 209.


Asunto(s)
Éteres Difenilos Halogenados/toxicidad , Hipocampo/efectos de los fármacos , Activación del Canal Iónico , Neuronas/efectos de los fármacos , Canales de Sodio/efectos de los fármacos , Animales , Hipocampo/citología , Hipocampo/metabolismo , Neuronas/metabolismo , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Canales de Sodio/metabolismo , Técnicas de Cultivo de Tejidos
8.
J Affect Disord ; 274: 678-689, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32664002

RESUMEN

BACKGROUND: More and more people are suffering from depression in modern society. It is believed that the development of depression results from alterations in synaptic transmission, especially in the hippocampus. Animal experiments and clinical studies have demonstrated that retinoids are essential components in hippocampal synaptic plasticity, and they have a close relationship with depression. However, it is still unclear how excessive retinoic acid (RA) causes depression and what synaptic and molecular mechanisms underlie it. METHODS: Behavioral, electrophysiological, and molecular approaches were employed to characterize the effects of RA on depression and synaptic plasticity. RA was continuously administered intracerebroventricularly through an osmotic pump. RESULTS: RA treatment induced depression-like behaviors, as evidenced by decreased sucrose preference and increased immobile duration in both the forced swim test and the tail suspension test. RA administration also induced anxiety-like behaviors, indicated by decreased duration in the open arms of the elevated plus maze and the central of the open field. RA treatment decreased the neuronal excitability of the hippocampus either by changing the excitatory/inhibitory receptor balance or by promoting the synthesis of inhibitory neurotransmitters. Moreover, long-term potentiation was decreased in both the excitatory postsynaptic potential and the population spike in RA-treated rats, presumably a consequence of the reduced glur1 transcript level. LIMITATIONS: The mechanism of how excess RA affects the hippocampal gene expression and synaptic plasticity requires further study. CONCLUSIONS: RA treatment can induce depression-like behavior in rats and impair hippocampal plasticity. Thus, improving synaptic plasticity in the hippocampus may ameliorate the affective disorders caused by excessive RA.


Asunto(s)
Depresión , Tretinoina , Animales , Depresión/inducido químicamente , Modelos Animales de Enfermedad , Hipocampo , Plasticidad Neuronal , Ratas , Transmisión Sináptica , Tretinoina/efectos adversos
9.
Nat Neurosci ; 23(7): 869-880, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32483349

RESUMEN

Besides generating vision, light modulates various physiological functions, including mood. While light therapy applied in the daytime is known to have anti-depressive properties, excessive light exposure at night has been reportedly associated with depressive symptoms. The neural mechanisms underlying this day-night difference in the effects of light are unknown. Using a light-at-night (LAN) paradigm in mice, we showed that LAN induced depressive-like behaviors without disturbing the circadian rhythm. This effect was mediated by a neural pathway from retinal melanopsin-expressing ganglion cells to the dorsal perihabenular nucleus (dpHb) to the nucleus accumbens (NAc). Importantly, the dpHb was gated by the circadian rhythm, being more excitable at night than during the day. This indicates that the ipRGC→dpHb→NAc pathway preferentially conducts light signals at night, thereby mediating LAN-induced depressive-like behaviors. These findings may be relevant when considering the mental health effects of the prevalent nighttime illumination in the industrial world.


Asunto(s)
Ritmo Circadiano/fisiología , Ritmo Circadiano/efectos de la radiación , Depresión/fisiopatología , Luz/efectos adversos , Vías Visuales/fisiología , Animales , Depresión/etiología , Habénula/fisiología , Habénula/efectos de la radiación , Ratones , Núcleo Accumbens/fisiología , Núcleo Accumbens/efectos de la radiación , Células Ganglionares de la Retina/fisiología , Células Ganglionares de la Retina/efectos de la radiación , Vías Visuales/efectos de la radiación
10.
Planta Med ; 75(10): 1112-7, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19291610

RESUMEN

Lead is a well-known toxin in the environment that causes severe damage to the nervous system. Gastrodin is the main bioactive component of Tian ma ( GASTRODIA ELATA Bl.), which is a traditional herbal medicine widely used in eastern Asia. Increasing lines of evidence show that gastrodin has diverse effects, especially neuroprotective effects. In the present study, we investigated whether gastrodin supplementation can rescue impairments of synaptic plasticity produced by developmental lead exposure. We examined three electrophysiological parameters of synaptic plasticity: input/output (I/O) function, paired-pulse facilitation (PPF), and long-term potentiation (LTP) of field excitatory postsynaptic potential (fEPSP) in the hippocampal CA1 region of rats on postnatal day 22 (P22). Our results showed that lead exposure significantly impaired synaptic plasticity in the hippocampal CA1 region and that gastrodin can effectively rescue these lead-induced impairments. Therefore, gastrodin may have potential therapeutic value for lead-induced impairments during human developmental stages.


Asunto(s)
Alcoholes Bencílicos/farmacología , Glucósidos/farmacología , Hipocampo/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Sinapsis/efectos de los fármacos , Animales , Potenciales Postsinápticos Excitadores , Femenino , Hipocampo/fisiología , Masculino , Ratas , Ratas Wistar
11.
J Neurosci Res ; 86(16): 3665-73, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18683240

RESUMEN

Lead is putatively regarded as an environmental neurotoxicant. Long-term low-level lead exposure causes cognitive deficits, but the mechanism remains to be elucidated. In the present study, the excitatory effects of low-level lead exposure on action potential (AP) firing of pyramidal neurons in CA1 region of rat hippocampal slices and the pathway through which lead induced these effects were studied with conventional whole-cell recording. Low-level lead (0.5 and 5 microM) exposure did not significantly change either voltage threshold or amplitude, duration, rise time, or rising velocity of single AP; conversely, 5 microM lead exposure significantly increased AP firing rates and reduced spike frequency adaptation. These excitatory effects of 5 microM lead were blocked by mibefradil, a selective blocker of T-type voltage-dependent calcium channels (VDCC), but not by verapamil and omega-conotoxin, selective blockers of L-type and N-type VDCC, respectively. Five micromolar lead could not change the excitability of pyramidal neurons when slices were perfused with calcium-free ACSF. In addition, the effects were abolished by inhibitors of two intracellular calcium release channels: 2-APB, an inhibitor of inositol trisphosphate receptors, and dantrolene, an inhibitor of ryanodine receptors, but not by thapsigargin, an inhibitor of endoplasmic reticulum calcium uptake. These results provide evidence for excitatory neurotoxicity of low-level lead exposure, contribution of T-type VDCC in the entrance of lead into neurons, and a possible involvement of calcium flux alteration during APs in this excitatory neurotoxicity.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Hipocampo/efectos de los fármacos , Intoxicación del Sistema Nervioso por Plomo/fisiopatología , Plomo/toxicidad , Neurotoxinas/toxicidad , Células Piramidales/efectos de los fármacos , Animales , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo T/efectos de los fármacos , Canales de Calcio Tipo T/metabolismo , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Relación Dosis-Respuesta a Droga , Sustancias Peligrosas/toxicidad , Hipocampo/metabolismo , Hipocampo/fisiopatología , Receptores de Inositol 1,4,5-Trifosfato/antagonistas & inhibidores , Masculino , Mibefradil/farmacología , Técnicas de Cultivo de Órganos , Células Piramidales/metabolismo , Ratas , Ratas Wistar , Canal Liberador de Calcio Receptor de Rianodina/efectos de los fármacos
12.
Environ Health Perspect ; 116(7): 915-22, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18629314

RESUMEN

BACKGROUND: The growing applications of nanotechnologic products, such as quantum dots (QDs), increase the likelihood of exposure. Furthermore, their accumulation in the bioenvironment and retention in cells and tissues are arousing increasing worries about the potentially harmful side effects of these nanotechnologic products. Previous studies concerning QD cytotoxicity focused on the reactive oxygen species produced by QDs. Cellular calcium homeostasis dysregulation caused by QDs may be also responsible for QD cytotoxicity. Meanwhile the interference of QDs with voltage-gated sodium channel (VGSC) current (I(Na)) may lead to changes in electrical activity and worsen neurotoxicologic damage. OBJECTIVE: We aimed to investigate the potential for neurotoxicity of cadmium selenium QDs in a hippocampal neuronal culture model, focusing on cytoplasmic calcium levels and VGSCs function. METHODS: We used confocal laser scanning and standard whole-cell patch clamp techniques. RESULTS: We found that a) QDs induced neuron death dose dependently; b) cytoplasmic calcium levels were elevated for an extended period by QD treatment, which was due to both extracellular calcium influx and internal calcium release from endoplasmic reticulum; and c) QD treatment enhanced activation and inactivation of I(Na), prolonged the time course of activation, slowed I(Na) recovery, and reduced the fraction of available VGSCs. CONCLUSION: Results in this study provide new insights into QD toxicology and reveal potential risks of their future applications in biology and medicine.


Asunto(s)
Compuestos de Cadmio/toxicidad , Calcio/metabolismo , Hipocampo/citología , Neuronas/efectos de los fármacos , Puntos Cuánticos , Compuestos de Selenio/toxicidad , Canales de Sodio/metabolismo , Animales , Muerte Celular/efectos de los fármacos , Células Cultivadas , Citoplasma/metabolismo , Relación Dosis-Respuesta a Droga , Neuronas/citología , Neuronas/metabolismo , Ratas
13.
Eur J Pharmacol ; 595(1-3): 30-4, 2008 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-18713624

RESUMEN

Lead (Pb(2+)) exposure in children can induce long-lasting deficits in cognitive function and has been modeled in experimental animals. Based on previous studies which demonstrated that S-adenosyl-l-methionine (SAM) is beneficial in the treatment of lead intoxication, here, we asked the question if SAM treatment could rescue the impaired cognition and synaptic plasticity induced by lead. Rats drank 1500 ppm lead acetate (PbAc) solution or distilled water throughout gestation and lactation. After weaning at postnatal day 22, one half of the control and lead-exposed male offspring were intraperitoneally injected 20 mg SAM/kg daily over a period of 20-22 days. Electrophysiological and Morris water maze test were performed at 44-54 days of age. The result showed that the impaired learning ability induced by lead could be improved significantly by SAM. Furthermore, our results revealed that long-term potentiation (LTP) of excitatory postsynaptic potential and population spike impairments induced by lead were also ameliorated by SAM treatment.


Asunto(s)
Conducta Animal/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Hipocampo/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos , Compuestos Organometálicos/toxicidad , Efectos Tardíos de la Exposición Prenatal , S-Adenosilmetionina/farmacología , Sinapsis/efectos de los fármacos , Factores de Edad , Animales , Cognición/efectos de los fármacos , Contaminantes Ambientales/sangre , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Hipocampo/crecimiento & desarrollo , Inyecciones Intraperitoneales , Lactancia , Masculino , Memoria/efectos de los fármacos , Compuestos Organometálicos/sangre , Embarazo , Ratas , Ratas Wistar , S-Adenosilmetionina/administración & dosificación
14.
Naunyn Schmiedebergs Arch Pharmacol ; 378(1): 43-51, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18458876

RESUMEN

Increasing evidence suggests that lead (Pb) produces impairments partly through oxidative stress. Though many researchers have investigated protective effect of some antioxidant nutrients against Pb toxicity, little information is available about the effect of antioxidants on Pb-induced impairment of synaptic plasticity. Quercetin, a strong antioxidant and radical scavenger, is the representative natural flavonoid molecule abundant in fruits and vegetables. Previous studies have found that quercetin was neuroprotective in many cases. This study was designed to evaluate the effect of quercetin on chronic Pb exposure-induced impairment of synaptic plasticity in adult rat dentate gyrus (DG) area in vivo. The input/output (I/O) functions, paired-pulse reactions (PPR), excitatory postsynaptic potential (EPSP), and population spike (PS) amplitude were measured in the DG area of different groups of rats in response to stimulation applied to the lateral perforant path. The results showed that the depressed I/O, PPR, and long-term potentiation (LTP) of Pb-exposed group were significantly increased by quercetin treatment. In addition, hippocampal Pb concentration was partially reduced after quercetin treatment. These findings suggest that quercetin treatment could relieve chronic Pb exposure-induced impairment of synaptic plasticity and might be a potential therapeutic intervention to cure cognitive deficits induced by Pb.


Asunto(s)
Antioxidantes/farmacología , Intoxicación por Plomo/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Quercetina/farmacología , Animales , Giro Dentado/efectos de los fármacos , Giro Dentado/fisiopatología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Plomo/metabolismo , Plomo/toxicidad , Intoxicación por Plomo/fisiopatología , Masculino , Plasticidad Neuronal/efectos de los fármacos , Ratas , Ratas Wistar , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo
15.
Toxicology ; 252(1-3): 1-8, 2008 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-18706964

RESUMEN

(-)-Epigallocatechin-3-gallate (EGCG), the main active component of green tea, is commonly known for its beneficial properties at low doses. On the other hand, little is known about the adverse effects of EGCG. Voltage-gated sodium channel (VGSC) is responsible for both initiation and propagation of action potentials of the neurons in the hippocampus and throughout the central nervous system (CNS). In this study, the effects of EGCG on voltage-gated sodium channel currents (I(Na)) were investigated in rat primary cultures of hippocampal CA1 neurons via the conventional whole-cell patch-clamp technique. We found that I(Na) was not affected by EGCG at the concentration of 0.1microM, but was completely blocked by EGCG at the concentration of 400microM and higher, and EGCG reduced the amplitudes of I(Na) in a concentration-dependent manner in the range of 0.1-400microM. Furthermore, our results also showed that at the concentration of 100microM, EGCG was known to have the following performances: (1) it decreased the activation threshold and the voltage at which the maximum I(Na) current was evoked, caused negative shifts of I(Na) steady-state activation curve. (2) It enlarged I(Na) tail-currents. (3) It induced a left shift of the steady-state inactivation. (4) It reduced fraction of available sodium channels. (5) It delayed the activation of I(Na) in a voltage-dependent manner. (6) It prolonged the time course of the fast inactivation of sodium channels. (7) It accelerated the activity-dependent attenuation of I(Na). On the basis of these findings, we propose that EGCG could impair certain physiological functions of VGSCs, which may contribute, directly or indirectly, to EGCG's effects in CNS.


Asunto(s)
Catequina/análogos & derivados , Hipocampo/citología , Neuronas/metabolismo , Agonistas de los Canales de Sodio , Animales , Animales Recién Nacidos , Catequina/farmacología , Células Cultivadas , Interpretación Estadística de Datos , Relación Dosis-Respuesta a Droga , Electrofisiología , Hipocampo/efectos de los fármacos , Activación del Canal Iónico/efectos de los fármacos , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Ratas , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/metabolismo
16.
Toxicol Lett ; 176(3): 215-22, 2008 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-18248923

RESUMEN

Cadmium (Cd(2+)) is a common pollutant that causes a wide variety of toxic effects on the central nervous system. However, the mechanism of Cd(2+) neurotoxicity remains to be elucidated. In the present study, we examined the effects of Cd(2+) on AMPA receptor-mediated synaptic transmission and short-term synaptic plasticity in hippocampal CA1 area, using whole-cell patch clamp technique. Cd(2+) significantly inhibited the peak amplitude of evoked EPSCs (eEPSCs) in a concentration-dependent manner and enhanced the short-term synaptic plasticity including paired-pulse facilitation and frequency facilitation. Cd(2+) also decreased the frequency and amplitude of spontaneous EPSCs (sEPSCs) but had no effect on those of miniature EPSCs (mEPSCs). These effects of Cd(2+) may involve a presynaptic mechanism of blockade of action potential-sensitive, calcium-dependent release of glutamate. In addition, Cd(2+) prolonged the decay time of both sEPSCs and mEPSCs, which suggested a postsynaptic action site of Cd(2+). This study demonstrates that Cd(2+) impairs the Schaffer collateral-commissural-CA1 glutamatergic synaptic transmission and short-term plasticity in rat hippocampal slices, which may be a possible contributing mechanism for the Cd(2+)-induced neurotoxic effects.


Asunto(s)
Cloruro de Cadmio/toxicidad , Contaminantes Ambientales/toxicidad , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Hipocampo/efectos de los fármacos , Receptores AMPA/metabolismo , Animales , Calcio/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiología , Técnicas In Vitro , Plasticidad Neuronal/efectos de los fármacos , Ratas , Ratas Wistar , Factores de Tiempo
17.
Zhonghua Yu Fang Yi Xue Za Zhi ; 42(3): 151-5, 2008 Mar.
Artículo en Zh | MEDLINE | ID: mdl-18788576

RESUMEN

OBJECTIVE: To explore the effects of S-adenosyl-L-methionine (SAM) on blood lead concentration and oxidative stress of tissue in prenatal and postnatal lead-exposed rats, and evaluate the potential reparation exerted by SAM on paired-pulse facilitation (PPF) and long-term potentiation (LTP) in lead-exposed rat. METHODS: Pregnant Wistar rats were randomly divided into three groups: control, lead-exposed and lead-exposed with SAM treatment groups. Lead-exposed rats drank 1.5 g/L lead acetate solution through pregnancy until weaning and then the pups received 20 mg/kg SAM or saline daily intraperitoneally depending on their group. Control group rats drank tap water throughout the experiment. At the postnatal 44-60 days, all the pup rats were given an extracellular recording measured in dentate gyrus (DG) area of hippocampus. The blood lead concentration and oxidative stress in liver, brain and hippocampus were also detected. RESULTS: The blood lead concentration in lead-exposed group was higher (159. 3 +/- 10. 9 microg/L) in comparing with those of control group (27.5 +/-3.8 microg/L) and lead +SAM group (33.1 +/-9.5 microg/L) (F=213.5, P<0.01). A significant recovery of liver, brain glutathione (GSH) and malondialdehyde (MDA) level was clearly produced in lead-exposed rats after SAM treatment (P <0.05). Chronic lead exposure during development impaired LTP measured on field excitatory postsynaptic potential (EPSP) [(112 +/-2.1)%] compared with control rats [(131+/-4.5)%] and the impaired LTP could be significantly increased by SAM treatment [(120 +/- 2.6)%] (F = 26. 1, P <0. 05). CONCLUSION: SAM might be beneficial for treatment of lead intoxication, especially in the rescue of learning and memory impairment induced by lead and should deserve more detailed research.


Asunto(s)
Intoxicación por Plomo/prevención & control , Potenciación a Largo Plazo/efectos de los fármacos , Exposición Materna/prevención & control , S-Adenosilmetionina/farmacología , Animales , Encéfalo/metabolismo , Femenino , Glutatión/biosíntesis , Plomo/sangre , Masculino , Embarazo , Ratas , Ratas Wistar
18.
Exp Neurol ; 306: 1-9, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29673933

RESUMEN

Lysophosphatidic acid (LPA), an extracellular signaling molecule, influences diverse biological events, including the pathophysiological process induced after ischemic brain injury. However, the molecular mechanisms mediating the pathological change after ischemic stroke remain elusive. Here we report that asparagine endopeptidase (AEP), a lysosomal cysteine proteinase, is regulated by LPA during stroke. AEP proteolytically cleaves tau and generates tauN368 fragments, triggering neuronal death. Inhibiting the generation of LPA reduces the expression of AEP and tauN368, and alleviates neuronal cell death. Together, this evidence indicates that the LPA-AEP pathway plays a key role in the pathophysiological process induced after ischemic stroke. Inhibition of LPA could be a useful therapeutic for treating neuronal injury after stroke.


Asunto(s)
Muerte Celular/efectos de los fármacos , Cisteína Endopeptidasas/metabolismo , Lisofosfolípidos/farmacología , Neuronas/efectos de los fármacos , Daño por Reperfusión/patología , Animales , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/patología , Cisteína Endopeptidasas/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/patología , Inyecciones Intraventriculares , Lisofosfolípidos/administración & dosificación , Masculino , Células PC12 , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/enzimología , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/patología , Proteínas tau/metabolismo
19.
BMC Dev Biol ; 7: 57, 2007 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-17535444

RESUMEN

BACKGROUND: Cell-cycle-related proteins, such as cyclins or cyclin-dependent kinases, may have functions beyond that of cell cycle regulation. The expression and translocation of cyclinD1-CDK4 in post-mitotic neurons indicate that they may have supplementary functions in differentiated neurons that might be associated with neuronal plasticity. RESULTS: In the present study, our findings showed that the expression of CDK4 was localized mostly in nuclei and cytoplasm of pyramidal cells of CA1 at postnatal day 10 (P10); whereas at P28 staining of CDK4 could be detected predominantly in the cytoplasm but not nuclei. Basal synaptic transmission was normal in the presence of CDK4 inhibitor. Short-term synaptic plasticity (STP) was impaired in CDK4 inhibitor pre-treated slices both from neonatal (P8-15) and adolescent (P21-35) animals; however there was no significant change in paired-pulse facilitation (PPF) in slices pre-incubated with the CDK4 inhibitor from adolescent animals. By the treatment of CDK4 inhibitor, the induction or the maintenance of Long-term potentiation (LTP) in response to a strong tetanus and NMDA receptor-dependent long-term depression (LTD) were normal in hippocampus. However, long-term depression (LTD) induced either by group I metabotropic glutamate receptors (mGluRs) agonist or by paired-pulse low-frequency stimulation (PP-LFS) was impaired in CDK4 inhibitor pretreated slices both from neonatal and adolescent animals. But the effects of the CDK4 inhibitor at slices from adolescent animals were not as robust as at slices from neonatal animals. CONCLUSION: Our results indicated that the activation of cyclinD1-CDK4 is required for short-term synaptic plasticity and mGluR-dependent LTD, and suggested that this cyclin-dependent kinase may have different roles during the postnatal development in mice hippocampus area CA1.


Asunto(s)
Quinasa 4 Dependiente de la Ciclina/metabolismo , Ciclinas/metabolismo , Hipocampo/crecimiento & desarrollo , Depresión Sináptica a Largo Plazo , Plasticidad Neuronal , Receptores de Glutamato Metabotrópico/metabolismo , Animales , Emparejamiento Cromosómico , Ciclina D , Ratones
20.
BMC Dev Biol ; 7: 51, 2007 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-17511882

RESUMEN

BACKGROUND: Previous study has demonstrated that dietary taurine supplement protected rats from impairments of synaptic plasticity induced by postnatal lead exposure. However, little is known about the role of taurine in the presence of prenatal and perinatal lead exposure. We investigated the possible effect of taurine supplement on prenatal and perinatal lead-induced synaptic plasticity deficit and determined developmental periods critical for the effect of taurine. RESULTS: In the present study, taurine was administrated to prenatal and perinatal lead-exposed rats in different developmental periods: from prenatal to weaning (Lead+PW-Tau), from weaning to life (Lead+WL-Tau), and from prenatal to life (Lead+PL-Tau). We examined the input-output (I/O) function, paired-pulse facilitation (PPF) and the long-term potentiation (LTP) of field excitatory postsynaptic potential (fEPSP) in the hippocampal CA1 area of rats on postnatal days 18-25 (P18-25) or days 60-75 (P60-75). We found that (1) on P18-25, taurine had no evident effect on I/O functions and PPF ratios of lead-exposed rats but caused a 12.0% increase in the LTP amplitudes of these animals; (2) on P60-75, taurine significantly elevated lead depressed I/O functions and PPF ratios in Lead+PW-Tau and Lead+PL-Tau rats, but failed in Lead+WL-Tau rats. The amplitudes of LTP of lead-exposed rats were all significantly increased by additional taurine supplement in any developmental period compared with untreated rats. Thus, taurine appeared to have the most effect during the prenatal and lactation periods and its effects on younger rats would not be manifest until the adult life; and (3) the level of lead deposition in hippocampus was evidently reduced by additional treatment of taurine in lead-exposed rats, compared with untreated rats. CONCLUSION: Taurine supplement can protect the adult rats from synaptic plasticity deficits following prenatal and perinatal lead exposure, and the protective effects are critical for the prenatal and lactation periods of lead-exposed rats.


Asunto(s)
Hipocampo/efectos de los fármacos , Hipocampo/embriología , Plomo/administración & dosificación , Plomo/toxicidad , Plasticidad Neuronal/efectos de los fármacos , Sinapsis/efectos de los fármacos , Taurina/farmacología , Animales , Animales Recién Nacidos , Suplementos Dietéticos , Desarrollo Embrionario/efectos de los fármacos , Femenino , Hipocampo/citología , Plomo/análisis , Potenciación a Largo Plazo/efectos de los fármacos , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Ratas , Ratas Wistar , Sinapsis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA