Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39269432

RESUMEN

The chimeric antigen receptor (CAR) T cells targeting CD4 expressed cells in acute lymphoblastic leukemia (T-ALL) and acute myeloid leukemia (AML) could reduce the risk of off target effects in normal tissues. However, the efficacy of adoptive cell therapy is predominantly attributed to CD8+ T cells, necessitating their purification before lentivirus transfection to enhance the production of CD4-CAR-T cells. In this study, we developed a microfluidic chip functionalized with an optimized CD8 aptamer, A3t-MU, to facilitate the enrichment and purification of CD8+ T cells. The presented chip showed efficient capture and seamless release of CD8+ T cells from cultured T cells and peripheral blood mononuclear cells (PBMCs). The purity of the released CD8+ T cells reached 98.1%, representing a 13% improvement over the conventional magnetic bead separation method. CD4-CAR was efficiently transduced into the purified CD8+ T cells to construct CAR-T cells. We evaluated the antitumor capability of the CD4-CAR transduced CD8+ T cells (anti-CD4 CD8-CAR T cells) both in vitro and in vivo. The anti-CD4 CD8-CAR T cells exhibited significant cancer-cell-killing capacity across multiple tumor cell lines, including CEM, Jurkat, and MV4-11. Meanwhile, anti-CD4 CD8-CAR T cells significantly inhibited tumor growth in vivo. In conclusion, the presented microfluidic chip offers a cost-effective and high-purity approach for CD8+ T cell separation, enhancing CD4-CAR transduction and achieving efficient antitumor capability both in vitro and in vivo.

2.
Bioconjug Chem ; 35(5): 604-615, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38661725

RESUMEN

Chimeric antigen receptor T-cell (CAR-T cell) therapy has become a promising treatment option for B-cell hematological tumors. However, few optional target antigens and disease relapse due to loss of target antigens limit the broad clinical applicability of CAR-T cells. Here, we conjugated an antibody (Ab) fusion protein, consisting of an Ab domain and a SpyCatcher domain, with the FITC-SpyTag (FITC-ST) peptide to form a bispecific safety switch module using a site-specific conjugation system. We applied the safety switch module to target CD19, PDL1, or Her2-expressing tumor cells by constructing FMC63 (anti-CD19), antiPDL1, or ZHER (anti-Her2)-FITC-ST, respectively. Those switch modules significantly improved the cytotoxic effects of anti-FITC CAR-T cells on tumor cells. Additionally, we obtained the purified CD8+ T cells by optimizing a shorter version of the CD8-binding aptamer to generate anti-FITC CD8-CAR-T cells, which combined with the CD4-FITC-ST switch module (anti-CD4) to eliminate the CD4-positive tumor cells in vitro and in vivo. Overall, we established a novel safety switch module by site-specific conjugation to enhance the antitumor function of universal CAR-T cells, thereby expanding the application scope of CAR-T therapy and improving its safety and efficacy.


Asunto(s)
Diseño de Fármacos , Inmunoterapia Adoptiva , Linfoma de Células B , Inmunoterapia Adoptiva/métodos , Linfoma de Células B/tratamiento farmacológico , Humanos , Fluoresceína-5-Isotiocianato/química , Péptidos/química , Dominios Proteicos , Receptores Quiméricos de Antígenos/química , Receptores Quiméricos de Antígenos/genética , Anticuerpos/química , Anticuerpos/genética
3.
Anal Chem ; 95(16): 6700-6708, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37052573

RESUMEN

With the merits of easy synthesis, strong modifiability, and high affinity, aptamers have been broadly applied for protein targeting in bioanalysis, diagnosis, and therapeutics. The selection of protein-targeted aptamers is currently largely dependent on solid-liquid separation by using different types of nano- or micro-beads. However, the use of beads inescapably introduces unwanted nonspecific binding and thus affects selection efficiency. In order to sidestep this obstacle, we herein report an integrated technique to facilitate the discovery and development of protein-targeting aptamers by incorporating formaldehyde cross-linking with phase separation (FCPS). The feasibility and universality of FCPS were confirmed by the successful selection of two aptamers that could target various antibodies. Unlike traditional approaches, the proposed technique avoids the use of beads and enables the rapid generation of aptamers after only one to three rounds of selection. The as-selected aptamers were further used to regulate and control antibody activity, showing potential applications in biomedicine.


Asunto(s)
Aptámeros de Nucleótidos , Técnica SELEX de Producción de Aptámeros/métodos , Formaldehído/química
4.
Cancer Immunol Immunother ; 72(11): 3739-3753, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37707586

RESUMEN

CD19 CAR-T (chimeric antigen receptor-T) cell immunotherapy achieves a remission rate of approximately 70% in recurrent and refractory lymphoma treatment. However, the loss or reduction of CD19 antigen on the surface of lymphoma cells results in the escape of tumor cells from the immune killing of CD19 CAR-T cells (CAR19-T). Therefore, novel therapeutic strategies are urgently required. In this study, an anti-CD79b/CD3 bispecific antibody (BV28-OKT3) was constructed and combined with CAR19-T cells for B-cell lymphoma treatment. When the CD19 antigen was lost or reduced, BV28-OKT3 redirected CAR19-T cells to CD79b+ CD19- lymphoma cells; therefore, BV28-OKT3 overcomes the escape of CD79b+ CD19- lymphoma cells by the killing action of CAR19-T cells in vitro and in vivo. Furthermore, BV28-OKT3 triggered the antitumor function of CAR- T cells in the infusion product and boosted the antitumor immune response of bystander T cells, markedly improving the cytotoxicity of CAR19-T cells to lymphoma cells in vitro and in vivo. In addition, BV28-OKT3 elicited the cytotoxicity of donor-derived T cells toward lymphoma cells in vitro, which depended on the presence of tumor cells. Therefore, our findings provide a new clinical treatment strategy for recurrent and refractory B-cell lymphoma by combining CD79b/CD3 BsAb with CAR19-T cells.


Asunto(s)
Anticuerpos Biespecíficos , Linfoma de Células B , Linfoma , Humanos , Linfocitos T , Antígenos CD19 , Muromonab-CD3 , Linfoma/tratamiento farmacológico , Inmunoterapia Adoptiva/métodos
5.
Appl Microbiol Biotechnol ; 107(2-3): 553-567, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36517545

RESUMEN

Recombinant protein drugs, which are typically produced by mammalian host cells, have been approved for the treatment of a range of diseases. Accordingly, systems for selecting recombinant cell lines with efficient protein expression and for testing the content of recombinant proteins in vivo are crucial to the large-scale production and application of protein-based therapeutic drugs. In this study, we designed three aptamer beacons to detect His-tag, a common label of recombinant proteins. We found that all three beacons could specifically and quantitatively measure the His-tagged recombinant proteins with a short reaction time. Among these three beacons, the 6H5-MU beacon had the highest sensitivity for His polypeptides with a detection limit of 250 ng/mL and the shortest detection time within 1 min. Furthermore, we established a rapid and highly effective recombinant cell line construction system, which could obtain monoclonal cell lines with high yields of target proteins within 21 days, by combining 6H5-MU with pSB, a novel plasmid composed of a Sleeping Beauty transposase and a transposon. Finally, 6H5-MU also discriminately tested the serum concentration of His-tagged recombinant proteins in vivo, with consistent results compared to enzyme-linked immunosorbent assay (ELISA). We thus established a rapid and high-throughput method for generating recombinant cell lines and in vivo monitoring of recombinant protein levels, thereby providing a new platform for the development and preparation of recombinant protein drugs. KEY POINTS: • The 6H5-MU aptamer beacon rapidly and accurately binds to His-tagged recombinant proteins. • A system for rapid and high-throughput generation of recombinant cell lines is established using 6H5-MU and pSB. • 6H5-MU allows in vivo monitoring of recombinant protein levels.


Asunto(s)
Mamíferos , Oligonucleótidos , Animales , Proteínas Recombinantes/genética , Línea Celular
6.
Zhongguo Zhong Yao Za Zhi ; 48(17): 4569-4588, 2023 Sep.
Artículo en Zh | MEDLINE | ID: mdl-37802797

RESUMEN

Prunellae Spica is the dried spica of Prunella vulgaris belonging to Labiatae and it is widely used in pharmaceutical and general health fields. As a traditional Chinese medicine cultivated on a large scale, it produces a large amount of non-medicinal parts, which are discarded because they are not effectively used. To analyze the chemical constituents in the different samples from spica, seed, stem, and leaf of P. vulgaris, and explore the application value and development prospect of these parts, this study used ultrahigh performance liquid chromatography-tandem quadrupoles time of flight mass spectrometry(UPLC-Q-TOF-MS/MS) to detect chemical constituents in different parts of P. vulgaris. As a result, 117 compounds were detected. Among them, 87 compounds were identified, including 32 phenolic acids, 8 flavonoids, and 45 triterpenoid saponins. Some new triterpenoid saponins containing the sugar chain with 4-6 sugar units were found. Further, multivariate statistical analysis was conducted on BPI chromatographic peaks of multiple batches of different parts, and the results showed that spica had the most abundant chemical constituents, including salviaflaside and linolenic acid highly contained in the seed and phenolic acids, flavonoids, and triterpenoid saponins in the stem and leaf. In general, the constituents in the spica were composed of those in the seed, stem, and leaf. UPLC was used to determine the content of 6 phenolic acids(danshensu, protocatechuic acid, protocatechuic aldehyde, caffeic acid, salviaflaside, and rosmarinic acid) in different parts. The content of other phenolic acids in the seed was generally lower than that in the spica except that of salviaflaside. The content of salviaflaside in the spica was higher than that in the stem and leaf, but the content of other phenolic acids in the spica was not significantly different from that in the stem. The content of protocatechuic aldehyde and caffeic acid in the spica was lower than that in the leaf. DPPH free radical scavenging method was used to detect the antioxidant activity of four parts, and there was no significant difference in the antioxidant activity between the spica and the stem and leaf, but that was significantly higher than the seed. Moreover, the antioxidant activity of these parts was correlated with the content of total phenolic acids. Based on the above findings, the stem and leaf of P. vulgaris have potential application value. Considering the traditional medication rule, it is feasible to use the whole plant as a medicine. Alternatively, salviaflaside, occurring in the seed, can be used as a marker compound for the quality evaluation of Prunellae Spica, if only using spica as the medicinal part of P. vulgaris, as described in the Chinese Pharmacopoeia(2020 edition).


Asunto(s)
Prunella , Saponinas , Triterpenos , Antioxidantes/química , Espectrometría de Masas en Tándem/métodos , Prunella/química , Cromatografía Líquida de Alta Presión/métodos , Ácidos Cafeicos , Flavonoides/análisis , Triterpenos/análisis , Azúcares
7.
Sensors (Basel) ; 21(4)2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33557182

RESUMEN

Signal is the first application that applies the double ratchet for its end-to-end encryption protocol. The core of the double ratchet protocol is then applied in WhatsApp, the most popular messaging application around the world. Asynchronous Ratchet Tree (ART) is extended from ratchet and Diffie-Hellman tree. It is the first group protocol that applies Forward Secrecy (FS) with Post-Compromised Security (PCS). However, it does not consider protecting the privacy of user identity. Therefore, it makes sense to provide anonymous features in the conditions of FS and PCS. In this paper, the concepts of Internal Group Anonymity (IGA) and External Group Anonymity (EGA) are formalized. On the basis of IGA and EGA, we develop the "Anonymous Asynchronous Ratchet Tree (AART)" to realize anonymity while preserving FS and PCS. Then, we prove that our AART meets the requirements of IGA and EGA as well as FS and PCS. Finally, the performance and related issues of AART are discussed.

8.
J Am Chem Soc ; 142(28): 12079-12086, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32516525

RESUMEN

Antibody drugs have been used to treat many diseases, and to date, this has been the most rapidly growing drug class. However, the lack of suitable methods for real-time and high-throughput monitoring of antibody production and quality control has been a hindrance to the further advancement of antibody drugs or biosimilars. Therefore, we herein report a versatile tool for one-step fluorescence monitoring of antibody production by using aptamer probes selected through the in vitro SELEX method. In this case, DNA aptamers were selected against the humanized IgG1 antibody drug trastuzumab with high specificity and affinity with a Kd value of aptamer CH1S-3 of 10.3 nM. More importantly, the obtained aptamers were able to distinguish native from heat-treated, whereas antibodies failed this test. On the basis of the advantages of rapid detection for aptamers, we designed aptamer molecular beacons for direct and sensitive detection of trastuzumab in complex samples. Unlike traditional antibody-based ELISA, the signal was observed directly upon interaction with the target without the need for time-consuming binding and multiple washing steps. To further highlight biomedical applications, the use of aptamers as potential tools for quality control and traceless purification of antibody drugs was also demonstrated. Thus, aptamers are shown to be promising alternatives for antibody production monitoring, quality control, and purification, providing technical support to accelerate antibody drug development.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnica SELEX de Producción de Aptámeros , Trastuzumab/análisis , Formación de Anticuerpos , Fluorescencia , Control de Calidad , Trastuzumab/biosíntesis
9.
Biotechnol Lett ; 41(6-7): 719-732, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31114947

RESUMEN

OBJECTIVES: To identify genes that affected protein expression in Chinese hamster ovary (CHO) cells was significant, and we identified the changes in the transcriptome and the functional gene sets that would contribute to increase expression of recombinant protein. RESULTS: Here two sub-clones from a methotrexate-treated parental recombinant CHO cell line were selected. The two sub-clones, with different expression levels (qp were 42.8 pg/cell/day and 14.0 pg/cell/day), were analyzed through RNA-seq. More than 600 genes were identified as differently expressed, and we found that the differentially expressed genes were involved in processes such as RNA processing, transcription, protein catabolism, and protein transport. Among these, we cloned genes encoding proteins that were involved in transcription and protein transport to investigate their effect on protein production. CONCLUSIONS: We found that some genes involved in transcription and protein transport would improve recombinant protein production in CHO cells.


Asunto(s)
Biotecnología/métodos , Células CHO/metabolismo , Regulación de la Expresión Génica , Transporte de Proteínas , Proteínas Recombinantes/metabolismo , Transcripción Genética , Animales , Cricetulus , Femenino , Perfilación de la Expresión Génica , Proteínas Recombinantes/genética
10.
Appl Microbiol Biotechnol ; 101(14): 5785-5797, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28540426

RESUMEN

Chinese hamster ovary (CHO) cells have been widely used for production of recombinant proteins and therapeutic antibodies. However, owing to the instability and heterogeneity of CHO cells, the development of stable and high-expression recombinant CHO cell lines is often time-consuming. To investigate the mechanisms associated with heterogeneity in protein productivity, we performed transcriptome analysis on the subclones derived from a stable parental CHO clone. Two high-expression subclones and one low-expression subclone were selected based on their similar genomic background and subjected to RNA-seq analysis. Over 100 differentially expressed genes were identified between the subclones with high and low productivity. The molecular functions of the differentially expressed genes were enriched for translational elongation, sterol biosynthetic process, and regulation of secretion. In addition, analyses of the two subclones with high protein expression levels identified over 300 differentially expressed genes involved in DNA metabolic processes, cellular macromolecule catabolic processes, cell cycle, protein catabolic processes, and RNA processing and transcription. A subset of the differentially expressed genes was overexpressed in CHO cells to identify their effects on protein production. Together, these results indicate that transcriptome variation can cause significant inter-cellular heterogeneity in CHO cells and a better understanding of the molecular mechanism underlying heterogeneity might help to improve the production of recombinant proteins by CHO cells.


Asunto(s)
Perfilación de la Expresión Génica , Heterogeneidad Genética , Proteínas Recombinantes/biosíntesis , Animales , Células CHO , Cricetulus , Redes y Vías Metabólicas/genética , Análisis de Secuencia de ARN , Esteroles/metabolismo , Tetrahidrofolato Deshidrogenasa/genética , Transcriptoma
11.
J Cardiothorac Surg ; 19(1): 361, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38915035

RESUMEN

BACKGROUND: Endotracheal intubation is often associated with postoperative complications such as sore throat discomfort and hoarseness, reducing patient satisfaction and prolonging hospital stays. Laryngeal mask airway (LMA) plays a critical role in reducing airway complications related to endotracheal intubation. This meta-analysis was performed to determine the efficacy and safety of LMA in video-assisted thoracic surgery (VATS). METHODS: The PubMed, Embase, Cochrane Library, Medline and Web of Science databases were searched for eligible studies from inception until October 5, 2023. Cochrane's tool (RoB 2) was used to evaluate the possibility biases of RCTs. We performed sensitivity analysis and subgroup analysis to assess the robustness of the results. RESULTS: Seven articles were included in this meta-analysis. Compared with endotracheal intubation, there was no significant difference in the postoperative hospital stay (SMD = -0.47, 95% CI = -0.98-0.03, P = 0.06), intraoperative minimum SpO2 (SMD = 0.00, 95% CI = -0.49-0.49, P = 1.00), hypoxemia (RR = 1.00, 95% CI = 0.26-3.89, P = 1.00), intraoperative highest PetCO2 (SMD = 0.51, 95% CI = -0.12-1.15, P = 0.11), surgical field satisfaction (RR = 1.01, 95% CI = 0.98-1.03, P = 0.61), anesthesia time (SMD = -0.10, 95% CI = -0.30-0.10, P = 0.31), operation time (SMD = 0.06, 95% CI = -0.13-0.24, P = 0.55) and blood loss (SMD =- 0.13, 95% CI = -0.33-0.07, P = 0.21) in LMA group. However, LMA was associated with a lower incidence of throat discomfort (RR = 0.28, 95% CI = 0.17-0.48, P < 0.00001) and postoperative hoarseness (RR = 0.36, 95% CI = 0.16-0.81, P = 0.01), endotracheal intubation was found in connection with a longer postoperative awake time (SMD = -2.19, 95% CI = -3.49 - -0.89, P = 0.001). CONCLUSION: Compared with endotracheal intubation, LMA can effectively reduce the incidence of throat discomfort and hoarseness post-VATS, and can accelerate the recovery from anesthesia. LMA appears to be an alternative to endotracheal intubation for some specific thoracic surgical procedures, and the efficacy and safety of LMA in VATS need to be further explored in the future.


Asunto(s)
Intubación Intratraqueal , Máscaras Laríngeas , Ensayos Clínicos Controlados Aleatorios como Asunto , Cirugía Torácica Asistida por Video , Humanos , Máscaras Laríngeas/efectos adversos , Cirugía Torácica Asistida por Video/métodos , Intubación Intratraqueal/métodos , Intubación Intratraqueal/efectos adversos , Complicaciones Posoperatorias/prevención & control , Complicaciones Posoperatorias/epidemiología , Tiempo de Internación
12.
Transl Pediatr ; 13(7): 1051-1060, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39144421

RESUMEN

Background: Brain arteriovenous malformation (BAVM) is one of the most common causes of cerebral hemorrhage in children. The effectiveness of one-stop hybrid operation in the treatment of BAVM in adults has been widely confirmed, but there are few study for the case in children. The aim of this study was to retrospectively analyze of the role and significance of one-stop hybrid surgery versus microsurgery in the treatment of BAVM in children. Methods: A total of 57 children (≤18 years old) with BAVM who were admitted to The 900th Hospital and Fujian Children's Hospital between September 2018 and August 2022 were retrospectively analyzed. According to the inclusion and exclusion criteria, 38 patients were included, and they were divided into a microsurgical group (25 patients) and a hybrid operation group (13 patients) according to the treatment modality. The following clinical characteristics were observed: sex, age, initial symptoms, presence or absence of signs, Glasgow Coma Scale (GCS) score, Hunt-Hess grade, imaging characteristics such as the location of the BAVM, Spetzler-Martin (S-M) grade, presence of intraventricular hemorrhage, treatment and prognostic indicators such as intraoperative blood loss, operation time, imaging cure, postoperative complications, length of hospital stay, and 3- and 6-month modified Rankin score (mRS) after the operation. Results: The proportions of female patients (P=0.042), patients whose BAVM were located in the supratentorial region (P=0.034) and patients whose S-M grade was above grade III (P=0.003) were greater in the hybrid operation group than those in the microsurgical group. The intraoperative blood loss (P<0.001), operation time (P<0.001) and postoperative hospital stay (P=0.024) of patients in the microsurgical group were greater than those in the hybrid operation group. The presence of signs and the S-M grade may be relevant factors in predicting the surgical approach, and the probability of selecting a hybrid operation for each step of increasing the S-M grade was 3.046 times that of microsurgery. Conclusions: A one-stop hybrid operation is effective and safe for the treatment of BAVM in children. High S-M grades of BAVM are more suitable for hybrid operation.

13.
Protein Sci ; 33(4): e4944, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38501479

RESUMEN

Antibody (Ab)-based drugs have been widely used in targeted therapies and immunotherapies, leading to significant improvements in tumor therapy. However, the failure of Ab therapy due to the loss of target antigens or Ab modifications that affect its function limits its application. In this study, we expanded the application of antibodies (Abs) by constructing a fusion protein as a versatile tool for Ab-based target cell detection, delivery, and therapy. We first constructed a SpaC Catcher (SpaCC for short) fusion protein that included the C domains of Staphylococcal protein A (SpaC) and the SpyCatcher. SpaCC conjugated with SpyTag-X (S-X) to form the SpaCC-S-X complex, which binds non-covalently to an Ab to form the Ab-SpaCC-S-X protein complex. The "X" can be a variety of small molecules such as fluoresceins, cell-penetrating peptide TAT, Monomethyl auristatin E (MMAE), and DNA. We found that Ab-SpaCC-S-FITC(-TAT) could be used for target cell detection and delivery. Besides, we synthesized the Ab-SpaCC-SN3-MMAE complex by linking Ab with MMAE by SpaCC, which improved the cytotoxicity of small molecule toxins. Moreover, we constructed an Ab-DNA complex by conjugating SpaCC with the aptamer (Ap) and found that Ab-SpaCC-SN3-Ap boosted the tumor-killing function of T-cells by retargeting tumor cells. Thus, we developed a multifunctional tool that could be used for targeted therapies and immunotherapies, providing a cheap and convenient novel drug development strategy.


Asunto(s)
Péptidos de Penetración Celular , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Inmunoterapia , Anticuerpos , ADN , Línea Celular Tumoral
14.
Adv Sci (Weinh) ; 11(10): e2305566, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38148412

RESUMEN

Chimeric antigen receptor (CAR)-positive cell therapy, specifically with anti-CD19 CAR-T (CAR19-T) cells, achieves a high complete response during tumor treatment for hematological malignancies. Large-scale production and application of CAR-T therapy can be achieved by developing efficient and low-cost enrichment methods for CAR-T cells, expansion monitoring in vivo, and overcoming tumor escape. Here, novel CAR-specific binding aptamers (CAR-ap) to traceless sort CAR-positive cells and obtain a high positive rate of CAR19-T cells is identified. Additionally, CAR-ap-enriched CAR19-T cells exhibit similar antitumor capacity as CAR-ab (anti-CAR antibody)-enriched CAR-T cells. Moreover, CAR-ap accurately monitors the expansion of CAR19-T cells in vivo and predicts the prognosis of CAR-T treatment. Essentially, a novel class of stable CAR-ap-based bispecific circular aptamers (CAR-bc-ap) is constructed by linking CAR-ap with a tumor surface antigen (TSA): protein tyrosine kinase 7 (PTK7) binding aptamer Sgc8. These CAR-bc-aps significantly enhance antitumor cytotoxicity with a loss of target antigens by retargeting CAR-T cells to the tumor in vitro and in vivo. Overall, novel CAR-aptamers are screened for traceless enrichment, monitoring of CAR-positive cells, and overcoming tumor cell immune escape. This provides a low-cost and high-throughput approach for CAR-positive cell-based immunotherapy.


Asunto(s)
Receptores Quiméricos de Antígenos , Escape del Tumor , Linfocitos T , Inmunoterapia Adoptiva/métodos , Inmunoterapia
15.
Nat Cell Biol ; 26(8): 1346-1358, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39039181

RESUMEN

Immunotherapy elicits a systemic antitumour immune response in peripheral circulating T cells. However, the T cell trafficking circuit between organs and their contributions to antitumour immunity remain largely unknown. Here we show in multiple mouse leukaemia models that high infiltration of leukaemic cells in bone marrow (BM) stimulates the transition of CD8+CD44+CD62L+ central memory T cells into CD8+CD44-CD62L- T cells, designated as inter-organ migratory T cells (TIM cells). TIM cells move from the BM to the intestine by upregulating integrin ß7 and downregulating C-X-C motif chemokine receptor 3 during leukaemogenesis. Upon immunogenic chemotherapy, these BM-derived TIM cells return from the intestine to the BM through integrin α4-vascular cell adhesion molecule 1 interaction. Blocking C-X-C motif chemokine receptor 3 function boosts the immune response against leukaemia by enhancing T cell trafficking. This phenomenon can also be observed in patients with leukaemia. In summary, we identify an unrecognized intestine-BM trafficking circuit of T cells that contributes to the antitumour effects of immunogenic chemotherapy.


Asunto(s)
Linfocitos T CD8-positivos , Movimiento Celular , Ratones Endogámicos C57BL , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Humanos , Receptores CXCR3/metabolismo , Cadenas beta de Integrinas/metabolismo , Médula Ósea/inmunología , Médula Ósea/patología , Médula Ósea/metabolismo , Intestinos/inmunología , Intestinos/patología , Ratones , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Mucosa Intestinal/metabolismo , Línea Celular Tumoral , Ratones Noqueados
16.
Appl Biochem Biotechnol ; 195(11): 7075-7085, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36976505

RESUMEN

Antibody drugs have been widely used to treat many diseases and are the fastest-growing drug class. IgG1 is the most common type of antibody because of its good serum stability; however, effective methods for the rapid detection of IgG1-type antibodies are lacking. In this study, we designed two aptamer molecules derived from the reported aptamer probe that has been proven to bind to the Fc fragment of the IgG1 antibody. The results showed that Fc-1S could specifically bind to the human IgG1 Fc proteins. In addition, we modified the structure of Fc-1S and constructed three aptamer molecular beacons that could quantitatively detect IgG1-type antibodies within a short time. Furthermore, we unveiled that the Fc-1S37R beacon has the highest sensitivity for IgG1-type antibodies with a detection limit of 48.82813 ng/mL and can accurately detect serum antibody concentrations in vivo with consistent results to ELISA. Therefore, Fc-1S37R is an efficient method for the production monitoring and quality control of IgG1-type antibodies to enable the large-scale production and application of antibody drugs.


Asunto(s)
Fragmentos Fc de Inmunoglobulinas , Inmunoglobulina G , Humanos , Inmunoglobulina G/química , Fragmentos Fc de Inmunoglobulinas/química
17.
Talanta ; 263: 124722, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37247456

RESUMEN

Screening novel aptamers for recombinant protein detection is of great significance in industrial mass production of antibody drugs. In addition, construction of structurally stable bispecific circular aptamers (bc-apts) may provide a tumor-targeted treatment strategy by simultaneously binding two different cell types. In this study, we obtained a high-affinity hexahistidine tag (His-tag)-binding aptamer 20S and explored its application in recombinant protein detection and T cell-based immunotherapy. We developed a new molecular beacon (MB) 20S-MB to detect His-tagged proteins in vitro and in vivo with high sensitivity and specificity, and the results showed high consistency with the enzyme-linked immunosorbent assay (ELISA). Moreover, we constructed two kinds of bc-apts by cyclizing 20S or another His-tag-binding aptamer, 6H5-MU, with Sgc8, which specifically recognizes protein tyrosine kinase 7 (PTK7) on tumor cells. After forming a complex with His-tagged OKT3, an anti-CD3 antibody for T cell activation, we utilized these aptamer-antibody complexes (ap-ab complex) to enhance cytotoxicity of T cells by linking T cells and target cells together, and 20S-sgc8 exhibited antitumor efficacy superior to that of 6H5-sgc8. In conclusion, we screened a novel His-tag-binding aptamer and used it to construct a new type of MB for rapid detection of recombinant proteins, as well as establish a feasible approach for T cell-based immunotherapy.


Asunto(s)
Aptámeros de Nucleótidos , Aptámeros de Nucleótidos/química , Linfocitos T , Proteínas Recombinantes , Inmunoterapia
18.
Adv Sci (Weinh) ; 10(28): e2302539, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37616380

RESUMEN

The treatment of bone defects remains a significant challenge to be solved clinically. Immunomodulatory properties of orthopedic biomaterials have significance in regulating osteoimmune microenvironment for osteogenesis. A lactic acid-co-glycolic acid (PLGA) scaffold incorporates black phosphorus (BP) fabricated by 3D printing technology to investigate the effect of BP on osteoimmunomodulation and osteogenesis in site. The PLGA/BP scaffold exhibits suitable biocompatibility, biodegradability, and mechanical properties as an excellent microenvironment to support new bone formation. The studies' result also demonstrate that the PLGA/BP scaffolds are able to recruit and stimulate macrophages M2 polarization, inhibit inflammation, and promote human bone marrow mesenchymal stem cells (hBMSCs) proliferation and differentiation, which in turn promotes bone regeneration in the distal femoral defect region of steroid-associated osteonecrosis (SAON) rat model. Moreover, it is screened and demonstrated that PLGA/BP scaffolds can promote osteogenic differentiation by transcriptomic analysis, and PLGA/BP scaffolds promote osteogenic differentiation and mineralization by activating PI3K-AKT signaling pathway in hBMSC cells. In this study, it is shown that the innovative PLGA/BP scaffolds are extremely effective in stimulating bone regeneration by regulating macrophage M2 polarization and a new strategy for the development of biomaterials that can be used to repair bone defects is offered.


Asunto(s)
Osteogénesis , Andamios del Tejido , Humanos , Ratas , Animales , Fosfatidilinositol 3-Quinasas/farmacología , Regeneración Ósea , Materiales Biocompatibles/farmacología , Impresión Tridimensional
19.
Cardiol Res Pract ; 2022: 4170060, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35342644

RESUMEN

Background: The clinical effects of intravascular ultrasound (IVUS)-guided percutaneous coronary intervention (PCI) in patients with chronic total occlusion (CTO) lesions remain unclear. Methods: We identified all full-text published studies that compared the effects of IVUS-guided CTO-PCI with angiography-guided CTO-PCI by searching electric databases including PubMed, Embase, Cochrane Library, and ISI Web of Science from the establishment to Nov 2021. There was no language limitation. The endpoints included the incidence of major adverse cardiac events (MACE), cardiac death, all-cause death, myocardial infarction (MI), and target vessel revascularization (TVR). Results: Five studies involving a total of 2320 patients were included in this meta-analysis. Compared to the angiography-guided group, IVUS-guided PCI showed no significant reduction in the incidence of MACE (I 2 = 27.4%, P = 0.239; RR 0.929, 95% CI 0.765 to 1.128, P = 0.457), cardiac death (I 2 = 0.0%, P = 0.459; RR 0.574, 95% CI 0.299 to 1.103, P = 0.096), all-cause death (I 2 = 0.0%, P = 0.964; RR 0.677, 95% CI 0.395 to 1.163, P = 0.158), MI (I 2 = 46.7%, P = 0.131; RR0.836, 95% CI 0.508 to 1.377, P = 0.482), and TVR (I 2 = 21.2%, P = 0.279; RR 0.929, 95% CI 0.679 to 1.272, P = 0.648). Conclusions: IVUS-guided PCI demonstrated no significant benefit on MACE, cardiac death, all-cause death, MI, and TVR in patients with CTO lesions. However, given the study's limitations, additional high-quality RCTs are needed.

20.
Stoch Environ Res Risk Assess ; 36(12): 4103-4117, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35873500

RESUMEN

The recent COVD-19 pandemic has been a major shock, affecting various macroeconomic indicators, including the environmental quality. The question of how the pandemics-related uncertainty will affect the environment is of paramount importance. The study analyzes the asymmetric impact of pandemic uncertainty on CO2 emissions in top-10 polluted economies (China, USA, India, Russia, Germany, Japan, Iran, South Korea, Indonesia, and Saudi Arabia). Taking panel data from 1996 to 2018, a unique technique, 'Quantile-on-Quantile (QQ)', is employed. CO2 emissions are used as an indicator of environmental quality. The outcomes define how the quantiles of pandemic uncertainty impact the quantiles of carbon emissions asymmetrically by providing an effective paradigm for comprehending the overall dependence framework. The outcomes reveal that pandemic uncertainty promotes environmental quality by lowering CO2 emissions in our sample countries at various quantiles. However, Japan shows mixed findings. The effect of PUN on CO2 is substantially larger in India, Germany, and South Korea and lower in Russia and Saudi Arabia. Furthermore, the magnitude of asymmetry in the pandemic uncertainty-CO2 emissions association differs by economy, emphasizing that government must pay particular caution and prudence when adopting pandemics-related uncertainty and environmental quality policies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA