Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37305979

RESUMEN

Recenly, near-infrared fluorescence heptamethine cyanine dyes have shown satisfactory values in bioengineering, biology, and pharmacy especially in cancer diagnosis and treatment, owing to their excellent fluorescence property and biocompatibility. In order to achieve broad application prospects, diverse structures, and chemical properties of heptamethine cyanine dyes have been designed to develop novel functional molecules and nanoparticles over the past decade. For fluorescence and photoacoustic tumor imaging properties, heptamethine cyanine dyes are equipped with good photothermal performance and reactive oxygen species production properties under near-infrared light irradiation, thus holding great promise in photodynamic and/or photothermal cancer therapies. This review offers a comprehensive scope of the structures, comparisons, and applications of heptamethine cyanine dyes-based molecules as well as nanoparticles in tumor treatment and imaging in current years. Therefore, this review may drive the development and innovation of heptamethine cyanine dyes, significantly offering opportunities for improving tumor imaging and treatment in a precise noninvasive manner. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Fluorescencia , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Nanopartículas/uso terapéutico , Nanopartículas/química , Colorantes , Colorantes Fluorescentes/uso terapéutico , Colorantes Fluorescentes/química , Imagen Óptica
2.
J Mater Chem B ; 11(15): 3295-3306, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-36960847

RESUMEN

Metal ions widely exist in biological systems and participate in many vital biochemical processes. Monitoring and analyzing metal ions in biological systems can help reveal physiological processes and understand disease causes. There are various detection methods for metal ions, among which organic small-molecule fluorescent probes have significant advantages, such as high fluorescence quantum yield, easy modification, good biocompatibility, high sensitivity, and fast real-time detection. This review presents recent studies on fluorescent probes for alkali and alkaline earth metal ions (including Na+, K+, Ca2+, and Mg2+) in biological systems. All the candidates are organized according to their structures, and the sensing mechanisms of fluorescent probes are also highly taken into account. Finally, the challenges, trends and prospects of fluorescent probes in metal ion detection are discussed. We hope that this review can provide guidance for the development of fluorescent molecular probe-based alkali and alkaline earth metal ion detection methods in the future.


Asunto(s)
Álcalis , Colorantes Fluorescentes , Colorantes Fluorescentes/química , Metales Alcalinotérreos/química , Iones , Metales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA