RESUMEN
In this paper, we demonstrated the design and experimental results of the near-infrared lab-on-a-chip optical biosensor platform that monolithically integrates the MRR and the on-chip spectrometer on the silicon-on-insulator (SOI) wafer, which can eliminate the external optical spectrum analyzer for scanning the wavelength spectrum. The symmetric add-drop MRR biosensor is designed to have a free spectral range (FSR) of â¼19â nm and a bulk sensitivity of â¼73â nm/RIU; then the drop-port output resonance peaks are reconstructed from the integrated spatial-heterodyne Fourier transform spectrometer (SHFTS) with the spectral resolution of â¼3.1â nm and the bandwidth of â¼50â nm, which results in the limit of detection of 0.042â RIU.
RESUMEN
AIM: To determine the risk patterns associated with transient hearing impairment (THI) and permanent hearing loss (PHL) of infants born very preterm who failed hearing screenings. METHOD: We enrolled 646 infants (347 males, 299 females) born at no more than 30 weeks' gestation between 2006 and 2020 who received auditory brainstem response screening at term-equivalent age. Audiological examinations of infants who failed the screening revealed THI, when hearing normalized, or PHL, defined as a persistent unilateral or bilateral hearing threshold above 20 dB. Principal component analysis (PCA) was used to characterize risk patterns. RESULTS: Among the 646 infants, 584 (90.4%) had normal hearing, 42 (6.5%) had THI, and 20 (3.1%) had PHL. Compared with the group with normal hearing, the THI and PHL groups had significantly higher rates of neurodevelopmental impairment at 24 months corrected age. PCA of risk patterns showed the THI group and especially the PHL group had more severe haemodynamic and respiratory instability. Moreover, severe intraventricular haemorrhage (IVH) was also a risk for PHL. Propensity score matching revealed an association of haemodynamic and respiratory instability with PHL. INTERPRETATION: In infants born preterm, the severity and duration of haemodynamic and respiratory instability are risk patterns for both THI and PHL; severe IVH is an additional risk for PHL. WHAT THIS PAPER ADDS: Neurodevelopmental delay was more common in infants born preterm who failed hearing screening. Principal component analysis revealed the risk patterns associated with hearing impairment. Haemodynamic-respiratory instability was associated with transient and permanent hearing impairment outcomes. Severe haemodynamic-respiratory instability and intraventricular haemorrhage was associated with permanent hearing loss.
Asunto(s)
Sordera , Pérdida Auditiva , Recién Nacido , Masculino , Femenino , Lactante , Humanos , Estudios Retrospectivos , Recien Nacido Extremadamente Prematuro , Pérdida Auditiva/diagnóstico , HemorragiaRESUMEN
The high-mobility group box-1 (HMGB1) protein is a transcription-regulating protein located in the nucleus. However, it serves as a damage-associated molecular pattern protein that activates immune cells and stimulates inflammatory cytokines to accentuate neuroinflammation after release from damaged cells. In contrast, Inter-alpha Inhibitor Proteins (IAIPs) are proteins with immunomodulatory effects including inhibition of pro-inflammatory cytokines. We have demonstrated that IAIPs exhibit neuroprotective properties in neonatal rats exposed to hypoxic-ischemic (HI) brain injury. In addition, previous studies have suggested that the light chain of IAIPs, bikunin, may exert its anti-inflammatory effects by inhibiting HMGB1 in a variety of different injury models in adult subjects. The objectives of the current study were to confirm whether HMGB1 is a target of IAIPs by investigating the potential binding characteristics of HMGB1 and IAIPs in vitro, and co-localization in vivo in cerebral cortices after exposure to HI injury. Solid-phase binding assays and surface plasmon resonance (SPR) were used to determine the physical binding characteristics between IAIPs and HMGB1. Cellular localizations of IAIPs-HMGB1 in neonatal rat cortex were visualized by double labeling with anti-IAIPs and anti-HMGB1 antibodies. Solid-phase binding and SPR demonstrated specific binding between IAIPs and HMGB1 in vitro. Cortical cytoplasmic and nuclear co-localization of IAIPs and HMGB1 were detected by immunofluorescent staining in control and rats immediately and 3 hours after HI. In conclusion, HMGB1 and IAIPs exhibit direct binding in vitro and co-localization in vivo in neonatal rats exposed to HI brain injury suggesting HMGB1 could be a target of IAIPs.
Asunto(s)
alfa-Globulinas/química , Corteza Cerebral/química , Proteína HMGB1/química , Hipoxia-Isquemia Encefálica/metabolismo , alfa-Globulinas/análisis , Animales , Animales Recién Nacidos , Femenino , Técnica del Anticuerpo Fluorescente , Proteína HMGB1/análisis , Inmunohistoquímica , Ratas , Ratas Wistar , Resonancia por Plasmón de SuperficieRESUMEN
Urothelial bladder cancer is rapidly spreading across Western countries, and therapy has shown little-to-moderate effects on bladder cancer. Thus, focusing on curbing cancer incidence has become crucial. The aim of the present study was to investigate the anticancer effects of Tannic acid (TA) in human bladder cancer. UMUC3 bladder cancer cells were treated with different concentrations of TA (0-100 µM) and tested for cell viability, colony formation, and apoptosis. The involvement of the phosphoinositide-3 kinase (PI3K)/Akt pathway in the action of TA was examined. TA treatment significantly inhibited the viability and increased percentage of apoptotic cells, thereby decreasing antiapoptotic proteins (BCL2, MCL-1, and BCL-XL) expression, resulting in the Caspase-3 activation. TA treatment decreased stem cell markers expression such as SOX2, OCT4, and NANOG. Additionally, TA treatment significantly reduced the phosphorylation levels of Akt in bladder cancer cells. Our study demonstrates the growth inhibitory effects of TA in bladder cancer cells, and highlights its potential as an anticancer agent for bladder cancer.
Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Neoplasias de la Vejiga Urinaria , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosforilación , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/metabolismo , Taninos/farmacología , Taninos/metabolismo , Línea Celular Tumoral , Proliferación Celular , ApoptosisRESUMEN
The heart is a very dynamic pumping organ working perpetually to maintain a constant blood supply to the whole body to transport oxygen and nutrients. Unfortunately, it is also subjected to various stresses based on physiological or pathological conditions, particularly more vulnerable to damages caused by oxidative stress. In this study, we investigate the molecular mechanism and contribution of IGF-IIRα in endoplasmic reticulum stress induction in the heart under doxorubicin-induced cardiotoxicity. Using in vitro H9c2 cells, in vivo transgenic rat cardiac tissues, siRNAs against CHOP, chemical ER chaperone PBA, and western blot experiments, we found that IGF-IIRα overexpression enhanced ER stress markers ATF4, ATF6, IRE1α, and PERK which were further aggravated by DOX treatment. This was accompanied by a significant perturbation in stress-associated MAPKs such as p38 and JNK. Interestingly, PARKIN, a stress responsive cellular protective mediator was significantly downregulated by IGF-IIRα concomitant with decreased expression of ER chaperone GRP78. Furthermore, ER stress-associated pro-apoptotic factor CHOP was increased considerably in a dose-dependent manner followed by elevated c-caspase-12 and c-caspase-3 activities. Conversely, treatment of H9c2 cells with chemical ER chaperone PBA or siRNA against CHOP abolished the IGF-IIRα-induced ER stress responses. Altogether, these findings suggested that IGF-IIRα contributes to ER stress induction and inhibits cellular stress coping proteins while increasing pro-apoptotic factors feeding into a cardio myocyte damage program that eventually paves the way to heart failure.
Asunto(s)
Estrés del Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Miocardio/metabolismo , Receptor IGF Tipo 2/metabolismo , Animales , Línea Celular , Citotoxinas/efectos adversos , Citotoxinas/farmacología , Doxorrubicina/efectos adversos , Doxorrubicina/farmacología , Retículo Endoplásmico/genética , Ratas , Ratas Transgénicas , Receptor IGF Tipo 2/genéticaRESUMEN
Hypertension is a common chronic cardiovascular disease reported among both men and women. Hypertension in males affects the testis and reproduction function; however, the pathogenesis is poorly understood. Rapamycin has been reported to have a variety of beneficial pharmacological effects; however, high-doses rapamycin does have side effects such as immunosuppression. The present study investigates whether low-dose rapamycin can reduce the damage caused by hypertension to the testis of spontaneously hypertensive rats (SHRs) and further examines molecular mechanism of low-dose rapamycin in preventing testicular toxicity induced by angiotensin II (Ang II). Low rapamycin dose restores the testicle size, histological alterations, 3ß-hydroxysteroid dehydrogenase (3ß-HSD) expression, and prevents apoptosis in SHR rats. Ang II downregulates angiotensin-converting enzyme-2 (ACE2) expression through AT1R, p-ERK, and MAS receptor in LC-540 Leydig cells in a dose-dependent manner. Low doses of rapamycin effectively upregulate steroidogenic enzymes, steroidogenic acute regulatory protein and 3ß-HSD expression in Leydig cells. Rapamycin upregulates ACE2 expression through p-PKAc and p-PI3k in Ang II-treated cells. Further, rapamycin curbs mitochondrial superoxide generation and depleted mitochondrial membrane potential induced by Ang II through activation of Nrf2-mediated Gpx4 and superoxide dismutase 2 expression. Our results revealed the involvement of ACE2, AT1R, AT2R, PKAc, and oxidative stress in Ang-II-induced testicular toxicity, suggesting low-dose rapamycin could be a potential therapeutic candidate to attenuate testicular toxicity.
Asunto(s)
Angiotensina II , Hipertensión , Angiotensina II/farmacología , Enzima Convertidora de Angiotensina 2 , Animales , Femenino , Humanos , Hidroxiesteroide Deshidrogenasas , Hipertensión/inducido químicamente , Hipertensión/tratamiento farmacológico , Hipertensión/metabolismo , Células Intersticiales del Testículo/metabolismo , Masculino , Factor 2 Relacionado con NF-E2 , Fosfatidilinositol 3-Quinasas , Ratas , Ratas Endogámicas SHR , Sirolimus/farmacología , Sirolimus/uso terapéutico , SuperóxidosRESUMEN
AIM: To determine whether early-life respiratory trajectories are associated with neurodevelopmental impairment (NDI) in infants born very and extremely preterm. METHOD: The daily type of respiratory supports in the first 8 weeks after birth were analysed in 546 infants (285 males, 261 females; median gestational age = 28.0 weeks, interquartile range = 3 weeks), comprising 301 infants born very preterm (gestation = 28-30 weeks) and 245 infants born extremely preterm (gestation <28 weeks), who survived to discharge from 2004 to 2018 and received follow-up assessment by Bayley Scales of Infant and Toddler Development at a corrected age of 24 months. NDI included cognition or motor impairment, moderate and severe cerebral palsy, or visual and hearing impairment. RESULTS: Clustering analysis identified three respiratory patterns with increasing severity: improving; slowly improving; and delayed improvement. These were significantly associated with increasing rates of NDI in infants born very and extremely preterm and smaller head circumference in infants born extremely preterm (both p < 0.001). By day 28, the proportion of infants who were under different categories of ventilation support significantly differed according to the three trajectory groups in infants born very and extremely preterm (both p < 0.05). Models that included adverse respiratory trajectories demonstrated more negative impacts on neurodevelopment than those without. INTERPRETATION: An adverse early-life respiratory trajectory was associated with NDI at follow-up, especially in infants born extremely preterm, suggesting a lung-brain axis of preterm birth. WHAT THIS PAPER ADDS: Clustering analysis identified three respiratory trajectories with increasing severity in infants born preterm. Increasing severity of respiratory trajectories was associated with increasing rates of neurodevelopmental impairment. Adverse respiratory trajectories had a significantly negative impact on neurodevelopmental outcomes.
OBJETIVO: Determinar se as trajetórias respiratórias no início da vida estão associadas ao comprometimento do neurodesenvolvimento (CND) em bebês nascidos muito e extremamente prematuros. MÉTODOS: O tipo diário de suporte respiratório nas primeiras 8 semanas após o nascimento foi analisado em 546 bebês (285 meninos, 261 meninas; idade gestacional mediana = 28,0 semanas, intervalo interquartil = 3 semanas), compreendendo 301 bebês nascidos muito prematuros (gestação = 28-30 semanas) e 245 bebês nascidos extremamente prematuros (gestação < 28 semanas), que sobreviveram à alta entre 2004 e 2018 e receberam avaliação de seguimento por meio da Bayley Scales of Infant and Toddler Development na idade corrigida de 24 meses. O CND incluiu deficiência cognitiva ou motora, paralisia cerebral moderada e grave ou deficiência visual e auditiva. RESULTADOS: A análise de agrupamento identificou três padrões respiratórios com gravidade crescente: melhorando; melhorando lentamente; e melhora tardia. Estes foram significativamente associados com taxas crescentes de CND em bebês nascidos muito e extremamente prematuros e menor perímetro cefálico em bebês nascidos extremamente prematuros (ambos p < 0,001). No dia 28, a proporção de bebês que estavam sob diferentes categorias de suporte ventilatório diferiu significativamente de acordo com os três grupos de trajetória em bebês nascidos muito prematuros e extremamente prematuros (ambos p < 0,05). Os modelos que incluíram trajetórias respiratórias adversas demonstraram mais impactos negativos no neurodesenvolvimento do que aqueles sem. INTERPRETAÇÃO: Uma trajetória respiratória adversa no início da vida foi associada ao CND no seguimento, especialmente em bebês nascidos extremamente prematuros, sugerindo um eixo pulmão-cérebro de nascimento prematuro.
Asunto(s)
Enfermedades del Prematuro , Trastornos del Neurodesarrollo , Nacimiento Prematuro , Preescolar , Femenino , Edad Gestacional , Humanos , Lactante , Recien Nacido Extremadamente Prematuro , Recién Nacido , Enfermedades del Prematuro/epidemiología , Masculino , Trastornos del Neurodesarrollo/epidemiología , Trastornos del Neurodesarrollo/etiología , Estudios RetrospectivosRESUMEN
BACKGROUND: During the COVID-19 pandemic, personal health records (PHRs) have enabled patients to monitor and manage their medical data without visiting hospitals and, consequently, minimize their infection risk. Taiwan's National Health Insurance Administration (NHIA) launched the My Health Bank (MHB) service, a national PHR system through which insured individuals to access their cross-hospital medical data. Furthermore, in 2019, the NHIA released the MHB software development kit (SDK), which enables development of mobile apps with which insured individuals can retrieve their MHB data. However, the NHIA MHB service has its limitations, and the participation rate among insured individuals is low. OBJECTIVE: We aimed to integrate the MHB SDK with our developed blockchain-enabled PHR mobile app, which enables patients to access, store, and manage their cross-hospital PHR data. We also collected and analyzed the app's log data to examine patients' MHB use during the COVID-19 pandemic. METHODS: We integrated our existing blockchain-enabled mobile app with the MHB SDK to enable NHIA MHB data retrieval. The app utilizes blockchain technology to encrypt the downloaded NHIA MHB data. Existing and new indexes can be synchronized between the app and blockchain nodes, and high security can be achieved for PHR management. Finally, we analyzed the app's access logs to compare patients' activities during high and low COVID-19 infection periods. RESULTS: We successfully integrated the MHB SDK into our mobile app, thereby enabling patients to retrieve their cross-hospital medical data, particularly those related to COVID-19 rapid and polymerase chain reaction testing and vaccination information and progress. We retrospectively collected the app's log data for the period of July 2019 to June 2021. From January 2020, the preliminary results revealed a steady increase in the number of people who applied to create a blockchain account for access to their medical data and the number of app subscribers among patients who visited the outpatient department (OPD) and emergency department (ED). Notably, for patients who visited the OPD and ED, the peak proportions with respect to the use of the app for OPD and ED notes and laboratory test results also increased year by year. The highest proportions were 52.40% for ED notes in June 2021, 88.10% for ED laboratory test reports in May 2021, 34.61% for OPD notes in June 2021, and 41.87% for OPD laboratory test reports in June 2021. These peaks coincided with Taiwan's local COVID-19 outbreak lasting from May to June 2021. CONCLUSIONS: This study developed a blockchain-enabled mobile app, which can periodically retrieve and integrate PHRs from the NHIA MHB's cross-hospital data and the investigated hospital's self-pay medical data. Analysis of users' access logs revealed that the COVID-19 pandemic substantially increased individuals' use of PHRs and their health awareness with respect to COVID-19 prevention.
Asunto(s)
COVID-19 , Registros de Salud Personal , Aplicaciones Móviles , Humanos , Pandemias , Estudios Retrospectivos , SARS-CoV-2 , Taiwán/epidemiologíaRESUMEN
Oxidative stress-induced brain cell damage is a crucial factor in the pathogenesis of reactive oxygen species (ROS)-associated neurological diseases. Further, studies show that astrocytes are an important immunocompetent cell in the brain and play a potentially significant role in various neurological diseases. Therefore, elimination of ROS overproduction might be a potential strategy for preventing and treating neurological diseases. Accumulating evidence indicates that calycosin, a main active ingredient in the Chinese herbal medicine Huangqi (Radix Astragali Mongolici), is a potential therapeutic candidate with anti-inflammation and/or anticancer effects. Here, we investigated the protective effect of calycosin in brain astrocytes by mimicking in vitro oxidative stress using H2 O2 . The results revealed that H2 O2 significantly induced ROS and inflammatory factor (tumor necrosis factor [TNF]-α and interleukin [IL]-1ß) production, whereas post-treatment with calycosin dramatically and concentration-dependently suppressed H2 O2 -induced damage by enhancing cell viability, repressing ROS and inflammatory factor production, and increasing superoxide dismutase (SOD) expression. Additionally, we found that calycosin facilitated nuclear factor erythroid 2-related factor 2 (Nrf2) expression and promoted its nuclear translocation, thereby inducing the expression of antioxidant molecules (heme oxygenase [HO]-1 and SOD) following H2 O2 treatment. Moreover, calycosin did not attenuated H2 O2 -induced astrocyte damage and ROS production in the presence of the ML385 (a Nrf2-specific inhibitor) and following Nrf2 silencing. Furthermore, calycosin failed to increase Akt phosphorylation and mitigate H2 O2 -induced astrocyte damage in the presence of the LY294002 (a selective phosphatidylinositol 3-kinase inhibitor), indicating that calycosin-mediated regulation of oxidative-stress homeostasis involved Akt/Nrf2/HO-1 signaling. These findings demonstrated that calycosin protects against oxidative injury in brain astrocytes by regulating oxidative stress through the AKT/Nrf2/HO-1 signaling pathway.
Asunto(s)
Factor 2 Relacionado con NF-E2 , Proteínas Proto-Oncogénicas c-akt , Astrocitos/metabolismo , Hemo-Oxigenasa 1/metabolismo , Isoflavonas , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de SeñalRESUMEN
Diabetic neuropathy is a common complication of diabetes mellitus, posing a challenge in treatment. Previous studies have indicated the protective role of mesenchymal stem cells against several disorders. Although they can repair nerve injury, their key limitation is that they reduce viability under stress conditions. We recently observed that overactivation of the carboxyl terminus of heat shock protein 70 (Hsp70) interacting protein (CHIP) considerably rescued cell viability under hyperglycemic stress and played an essential role in promoting the beneficial effects of Wharton's jelly-derived mesenchymal stem cells (WJMSCs). Thus, the present study was designed to unveil the protective effects of CHIP-overexpressing WJMSCs against neurodegeneration using in vivo animal model based study. In this study, western blotting observed that CHIP-overexpressing WJMSCs could rescue nerve damage observed in streptozotocin-induced diabetic rats by activating the AMPKα/AKT and PGC1α/SIRT1 signaling pathway. In contrast, these signaling pathways were downregulated upon silencing CHIP. Furthermore, CHIP-overexpressing WJMSCs inhibited inflammation induced in the brains of diabetic rats by suppressing the NF-κB, its downstream iNOS and cytokines signaling nexus and enhancing the antioxidant enzyme system. Moreover, TUNEL assay demonstrated that CHIP carrying WJMSCs suppressed the apoptotic cell death induced in STZ-induced diabetic group. Collectively, our findings suggests that CHIP-overexpressing WJMSCs might exerts beneficial effects, which may be considered as a therapeutic strategy against diabetic neuropathy complications.
Asunto(s)
Diabetes Mellitus Experimental , Neuropatías Diabéticas , Células Madre Mesenquimatosas , Gelatina de Wharton , Animales , Diferenciación Celular , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Neuropatías Diabéticas/metabolismo , Neuropatías Diabéticas/prevención & control , Ratas , Estreptozocina/metabolismo , Estreptozocina/farmacologíaRESUMEN
Some clinical studies have indicated the patients with Alzheimer's disease (AD) display an increased risk of cardiovascular disease (CVD). Here, to examine the relationship between AD and CVDs, we investigated the changes in heart function in triple-transgenic late-stage AD model mice (3× Tg-AD; APPSwe, PS1M146V, and tauP301L). We fed the AD mice folic acid (FA) or folinic acid (FN) and analyzed the protective effects of the compounds on the heart; specifically, 20-month-old triple-transgenic AD mice, weighing 34-55 g, were randomly allocated into three groups-the AD, AD + FA, and AD + FN groups-and subject to gastric feeding with FA or FN once daily at 12 mg/kg body weight (BW) for 3 months. Mouse BWs were assessed throughout the trial, at the end of which the animals were sacrificed using carbon dioxide suffocation. We found that BW, whole-heart weight, and left-ventricle weight were reduced in the AD + FA and AD + FN groups as compared with the measurements in the AD group. Furthermore, western blotting of excised heart tissue revealed that the levels of the hypertrophy-related protein markers phospho(p)-p38 and p-c-Jun were markedly decreased in the AD + FA group, whereas p-GATA4, and ANP were strongly reduced in the AD + FN group. Moreover, the fibrosis-related proteins uPA, MMP-2, MEK1/2 and SP-1 were decreased in the heart in both AD + FN group. In summary, our results indicate that FA and FN can exert anti-cardiac hypertrophy and fibrosis effects to protect the heart in aged triple-transgenic AD model mice, particular in FN.
Asunto(s)
Enfermedad de Alzheimer , Anciano , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Cardiomegalia , Modelos Animales de Enfermedad , Fibrosis , Ácido Fólico/farmacología , Ácido Fólico/uso terapéutico , Humanos , Leucovorina , Ratones , Ratones TransgénicosRESUMEN
Diabetic nephropathy is a serious chronic complication affecting at least 25% of diabetic patients. Hyperglycemia associated advanced glycation end-products (AGEs) increase tubular epithelial-myofibroblast transdifferentiation (TEMT) and extracellular matrix synthesis and thereby causes renal fibrosis. The chalcone isoliquiritigenin, found in many herbs of Glycyrrhiza family, is known for potential health-promoting effects. However, their effects on AGE-associated renal proximal tubular fibrosis are not known yet. In this study, the effect of isoliquiritigenin on AGE-induced renal proximal tubular fibrosis was determined in cultured HK-2 cell line. The results show that 200 µg/mL of AGE-induced TEMT and the formed myofibroblasts synthesized collagen to increase extracellular matrix formation thereby lead to renal tubular fibrosis. However, treatment with 200 nM of isoliquiritigenin considerably inhibited the TEMT and suppressed the TGFß/STAT3 mechanism to inhibit collagen secretion. Therefore, isoliquiritigenin effectively suppressed AGE-induced renal tubular fibrosis.
Asunto(s)
Chalconas , Nefropatías Diabéticas , Chalconas/farmacología , Colágeno/metabolismo , Nefropatías Diabéticas/metabolismo , Células Epiteliales , Fibrosis , Productos Finales de Glicación Avanzada/metabolismo , HumanosRESUMEN
(1) Background: Bladder cancer is a malignant tumor mainly caused by exposure to environmental chemicals, with a high recurrence rate. NR1H4, also known as Farnesoid X Receptor (FXR), acts as a nuclear receptor that can be activated by binding with bile acids, and FXR is highly correlated with the progression of cancers. The aim of this study was to verify the role of FXR in bladder cancer cells. (2) Methods: A FXR overexpressed system was established to investigate the effect of cell viability, migration, adhesion, and angiogenesis in low-grade TSGH8301 and high-grade T24 cells. (3) Results: After FXR overexpression, the ability of migration, adhesion, invasion and angiogenesis of bladder cancer cells declined significantly. Focal adhesive complex, MMP2, MMP9, and angiogenic-related proteins were decreased, while FXR was overexpressed in bladder cancer cells. Moreover, FXR overexpression reduced vascular endothelial growth factor mRNA and protein expression and secretion in bladder cancer cells. After treatment with the proteosome inhibitor MG132, the migration, adhesion and angiogenesis caused by FXR overexpression were all reversed in bladder cancer cells. (4) Conclusions: These results may provide evidence on the role of FXR in bladder cancer, and thus may improve the therapeutic efficacy of urothelial carcinoma in the future.
Asunto(s)
Carcinoma de Células Transicionales , Receptores Citoplasmáticos y Nucleares/metabolismo , Neoplasias de la Vejiga Urinaria , Línea Celular Tumoral , Femenino , Humanos , Masculino , Neovascularización Patológica/genética , Complejo de la Endopetidasa Proteasomal , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , Factor A de Crecimiento Endotelial Vascular/genética , Factores de Crecimiento Endotelial VascularRESUMEN
Naphthalimide derivatives have multiple biological activities, including antitumour and anti-inflammatory activities. We previously synthesized several naphthalimide derivatives; of them, compound 5 was found to exert the strongest inhibitory effect on human DNA topoisomerase II activity. However, the effects of naphthalimide derivatives on platelet activation have not yet been investigated. Therefore, the mechanism underlying the antiplatelet activity of compound 5 was determined in this study. The data revealed that compound 5 (5-10 µM) inhibited collagen- and convulxin- but not thrombin- or U46619-mediated platelet aggregation, suggesting that compound 5 is more sensitive to the inhibition of glycoprotein VI (GPVI) signalling. Indeed, compound 5 could inhibit the phosphorylation of signalling molecules downstream of GPVI, followed by the inhibition of calcium mobilization, granule release and GPIIb/IIIa activation. Moreover, compound 5 prevented pulmonary embolism and prolonged the occlusion time, but tended to prolong the bleeding time, indicating that it can prevent thrombus formation but may increase bleeding risk. This study is the first to demonstrate that the naphthalimide derivative compound 5 exerts antiplatelet and antithrombotic effects. Future studies should modify compound 5 to synthesize more potent and efficient antiplatelet agents while minimizing bleeding risk, which may offer a therapeutic potential for cardiovascular diseases.
Asunto(s)
Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Naftalimidas/farmacología , Activación Plaquetaria/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/farmacología , Glicoproteínas de Membrana Plaquetaria/metabolismo , Trombosis/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Humanos , Inmunohistoquímica , Masculino , Ratones , Microvasos/efectos de los fármacos , Microvasos/metabolismo , Microvasos/patología , Estructura Molecular , Naftalimidas/química , Agregación Plaquetaria/efectos de los fármacos , Transducción de Señal , Trombosis/tratamiento farmacológico , Trombosis/etiología , Trombosis/patologíaRESUMEN
Pathological cardiac hypertrophy is associated with many diseases including hypertension. Recent studies have identified important roles for microRNAs (miRNAs) in many cardiac pathophysiological processes, including the regulation of cardiomyocyte hypertrophy. However, the role of miR-145-5p in the cardiac setting is still unclear. In this study, H9C2 cells were overexpressed with microRNA-145-5p, and then treated with Ang-II for 24 h, to study the effect of miR-145-5p on Ang-II-induced myocardial hypertrophy in vitro. Results showed that Ang-II treatment down-regulated miR-145-5p expression were revered after miR-145-5p overexpression. Based on results of bioinformatics algorithms, paxillin was predicted as a candidate target gene of miR-145-5p, luciferase activity assay revealed that the luciferase activity of cells was substantial downregulated the following co-transfection with wild paxillin 3'UTR and miR-145-5p compared to that in scramble control, while the inhibitory effect of miR-145-5p was abolished after transfection of mutant paxillin 3'UTR. Additionally, overexpression of miR-145-5p markedly inhibited activation of Rac-1/ JNK /c-jun/ NFATc3 and ANP expression and induced SIRT1 expression in Ang-II treated H9c2 cells. Jointly, our study suggested that miR-145-5p inhibited cardiac hypertrophy by targeting paxillin and through modulating Rac-1/ JNK /c-jun/ NFATc3/ ANP / Sirt1 signaling, therefore proving novel downstream molecular pathway of miR-145-5p in cardiac hypertrophy.
Asunto(s)
Angiotensina II/toxicidad , Cardiomegalia/tratamiento farmacológico , Regulación de la Expresión Génica/efectos de los fármacos , MicroARNs/genética , Mioblastos Cardíacos/efectos de los fármacos , Paxillin/antagonistas & inhibidores , Animales , Factor Natriurético Atrial/genética , Factor Natriurético Atrial/metabolismo , Cardiomegalia/inducido químicamente , Cardiomegalia/metabolismo , Cardiomegalia/patología , Células Cultivadas , MAP Quinasa Quinasa 4/genética , MAP Quinasa Quinasa 4/metabolismo , Mioblastos Cardíacos/metabolismo , Mioblastos Cardíacos/patología , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Proteínas Proto-Oncogénicas c-jun/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Ratas , Sirtuina 1/genética , Sirtuina 1/metabolismo , Vasoconstrictores/toxicidad , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismoRESUMEN
In this article, we present a Bayesian framework for multivariate longitudinal data analysis with a focus on selection of important elements in the generalized autoregressive matrix. An efficient Gibbs sampling algorithm was developed for the proposed model and its implementation in a comprehensive R package called MLModelSelection is available on the comprehensive R archive network. The performance of the proposed approach was studied via a comprehensive simulation study. The effectiveness of the methodology was illustrated using a nonalcoholic fatty liver disease dataset to study correlations in multiple responses over time to explain the joint variability of lung functions and body mass index. Supplementary materials for this article, including a standardized description of the materials needed to reproduce the work, are available as an online supplement.
Asunto(s)
Algoritmos , Teorema de Bayes , Simulación por Computador , Humanos , Análisis MultivarianteRESUMEN
Ageing is a complex biological process that increases the probability of disease and death, which affects the organs of all species. The accumulation of oxidative damage in the brain contributes to a progressive loss of cognitive functions or even declined the energy metabolism. In this study, we tested the effects of exercise training on the apoptosis, survival, and antioxidant signaling pathways in the cerebral cortex of three age groups of male rats; 3, 12, and 18 months. We observed that H2S and the expression of Nrf2-related antioxidant pathways declined with age and increased after exercise training. IGF1R survival pathway was less increased in middle-aged rats; however, significantly increased after exercise training. The expression of mitochondrial-dependent apoptotic pathway components, such as Bak, cytochrome C, and caspase 3 in the ageing control group, were much higher than those of the exercise training groups. This study demonstrated that exercise training could reduce the apoptosis and oxidative stress that accrues throughout ageing, which causes brain damage.
Asunto(s)
Antioxidantes , Factor 2 Relacionado con NF-E2 , Envejecimiento , Animales , Apoptosis , Corteza Cerebral/metabolismo , Masculino , Factor 2 Relacionado con NF-E2/metabolismo , RatasRESUMEN
Obesity in aged population have surges the occurrence of various metabolic disorders including Nonalcoholic fatty liver disease (NAFLD). Apoptosis in the liver is one of the causative factors for NAFLD-induced liver damage. Plants derived bioactive peptides have been shown as an alternative treatment approach for the treating NAFLD due to its less toxicity. Moderate exercise has been reported to improve cellular physiological function prevent age associated metabolic disorders. In the present study, we evaluate the effects of bioactive dipeptide (IF) derived from alcalase potato-protein hydrolysates and swimming exercise in preventing High Fat Diet (HFD)-induced liver damage in senescence accelerated mouse-prone 8 (SAMP8) mice model. Mouse were fed with HFD for 6 weeks followed by oral IF administration or swimming exercise and both for 8 weeks. HFD induces significant structural changes in liver of HFD fed SAMP8 mouse. Both IF administration and exercise prevent the structural abnormalities induced by HFD, however, combined IF treatment and exercise offer better protection. Combined IF treatment and exercise activate PI3K/Akt cell survival protein and effectively inhibit Fas-FADD-induced apoptosis in HFD fed aged mouse. Oral supplementation of bioactive peptide IF combined with moderate swimming exercise effectively alleviate HFD-induced hepatic injury in aged mice.
Asunto(s)
Apoptosis , Dipéptidos/farmacología , Hepatocitos/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Condicionamiento Físico Animal , Hidrolisados de Proteína/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Natación , Animales , Apoptosis/efectos de los fármacos , Biomarcadores/metabolismo , Supervivencia Celular/efectos de los fármacos , Dieta Alta en Grasa , Hepatocitos/efectos de los fármacos , Ratones , Solanum tuberosum/químicaRESUMEN
Collective intelligence of viruses is witnessed in many research articles. Most of the researches focus on the qualitative properties or observations. In this research, we model the behaviours and collective intelligence of SARS-CoV-2 by minimal spanning trees (MSTs), which specify the underlying mechanisms of resource allocation in the viral colony. The vertices of the trees are 50 states, DC and NYC in the USA. The weights of the edges are assigned by the reciprocal of the sum of cases or deaths of COVID-19. The types of trees are decided by the chosen 18 factors. We sample 304 time-series data and compute their MST-based auto-correlations for stability analysis. Then we perform correlated analysis and comparative analysis on these stable factors. Our results show MST approach fits the collective intelligence modelling very well; the total cases and total deaths over areas are highly correlated in terms of MSTs; and these stable factors have little to do with the geographical distance. The results also indicate the colonisation of SARS-CoV-2 is pretty mature and organised. Based on the results, for environmental or health policies, we should also turn our attention to the transmission routes that are independent of or far away from human population or densities. The viruses' colonies might already exist in the wild in a large scale, not only in the populated or polluted cities. We shall build or conduct a monitoring system of their colonisation and survival techniques, in order to terminate, contain or live with their communities.
Asunto(s)
COVID-19 , SARS-CoV-2 , Ciudades , Geografía , Humanos , InteligenciaRESUMEN
[This corrects the article DOI: 10.2196/27806.].