Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Am Chem Soc ; 144(30): 13888-13894, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35857020

RESUMEN

Fibrils of the hamster prion peptide (sHaPrP, sequence 108-144) were prepared in an acidic solution, and their structure was solved by cryogenic electron microscopy with a resolution of 2.23 Å based on the gold-standard Fourier shell correlation (FSC) curve. The fibril has a novel architecture that has never been found in other amyloid fibrils. Each fibril is assembled by four protofilaments (PFs) and has an ordered water channel in the center. Each protofilament contains three ß-strands (125-130, 133-135, and 138-141) arranged in an "R"-shaped construct. The structural data indicate that these three ß-strand segments are the most amyloidogenic region of the prion peptide/protein and might be the site of nucleation during fibrillization under conditions without denaturants.


Asunto(s)
Acuaporinas , Priones , Amiloide/química , Animales , Cricetinae , Microscopía por Crioelectrón , Péptidos , Proteínas Priónicas , Priones/química
2.
IUBMB Life ; 74(8): 780-793, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34288372

RESUMEN

Prion protein is composed of a structure-unsolved N-terminal domain and a globular C-terminal domain. Under limited trypsin digestion, mouse recombinant prion protein can be cleaved into two parts at residue Lys105. Here, we termed these two fragments as the N-domain (sequence 23-105) and the C-domain (sequence 106-230). In this study, the structural properties of the N-domain, the C-domain, and the full-length protein were explored using small-angle X-ray scattering, analytical ultracentrifugation, circular dichroism spectroscopy, and the 8-anilino-1-naphthalenesulfonic acid binding assay. The conformation and size of the prion protein were found to change sensitively under the solvent conditions. The positive residues in the sequence 23-99 of the N-domain were found to be responsible for the enhanced flexibility with the salt concentration reduced below 5 mM. The C-domain containing a hydrophobic patch tends to unfold and aggregate during a salt-induced structural collapse. The N-domain collapsed together with the C-domain at pH 5.2, whereas it collapsed independently at pH 4.2. The positively charged cluster (sequence 100-105) in the N-domain contributed to protecting the exposed hydrophobic surface of the C-domain.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteínas Priónicas , Animales , Dicroismo Circular , Proteínas Intrínsecamente Desordenadas/química , Ratones , Proteínas Priónicas/química , Dominios Proteicos
3.
Appl Environ Microbiol ; 87(13): e0044221, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33893118

RESUMEN

Enterococcus faecalis, a member of the commensal flora in the human gastrointestinal tract, has become a threatening nosocomial pathogen because it has developed resistance to many known antibiotics. More concerningly, resistance gene-carrying E. faecalis cells may transfer antibiotic resistance to resistance-free E. faecalis cells through their unique quorum sensing-mediated plasmid transfer system. Therefore, we investigated the role of probiotic bacteria in the transfer frequency of the antibiotic resistance plasmid pCF10 in E. faecalis populations to mitigate the spread of antibiotic resistance. Bacillus subtilis subsp. natto is a probiotic strain isolated from Japanese fermented soybean foods, and its culture fluid potently inhibited pCF10 transfer by suppressing peptide pheromone activity from chromosomally encoded CF10 (cCF10) without inhibiting E. faecalis growth. The inhibitory effect was attributed to at least one 30- to 50-kDa extracellular protease present in B. subtilis subsp. natto. Nattokinase of B. subtilis subsp. natto was involved in the inhibition of pCF10 transfer and cleaved cCF10 (LVTLVFV) into LVTL plus VFV fragments. Moreover, the cleavage product LVTL (L peptide) interfered with the conjugative transfer of pCF10. In addition to cCF10, faecalis-cAM373 and gordonii-cAM373, which are mating inducers of vancomycin-resistant E. faecalis, were also cleaved by nattokinase, indicating that B. subtilis subsp. natto can likely interfere with vancomycin resistance transfer in E. faecalis. Our work shows the feasibility of applying fermentation products of B. subtilis subsp. natto and L peptide to mitigate E. faecalis antibiotic resistance transfer. IMPORTANCE Enterococcus faecalis is considered a leading cause of hospital-acquired infections. Treatment of these infections has become a major challenge for clinicians because some E. faecalis strains are resistant to multiple clinically used antibiotics. Moreover, antibiotic resistance genes can undergo efficient intra- and interspecies transfer via E. faecalis peptide pheromone-mediated plasmid transfer systems. Therefore, this study provided the first experimental demonstration that probiotics are a feasible approach for interfering with conjugative plasmid transfer between E. faecalis strains to stop the transfer of antibiotic resistance. We found that the extracellular protease(s) of Bacillus subtilis subsp. natto cleaved peptide pheromones without affecting the growth of E. faecalis, thereby reducing the frequency of conjugative plasmid transfer. In addition, a specific cleaved pheromone fragment interfered with conjugative plasmid transfer. These findings provide a potential probiotic-based method for interfering with the transfer of antibiotic resistance between E. faecalis strains.


Asunto(s)
Bacillus , Farmacorresistencia Bacteriana/genética , Enterococcus faecalis/genética , Probióticos/farmacología , Bacillus/genética , Bacillus/metabolismo , Proteínas Bacterianas/metabolismo , Enterococcus faecalis/metabolismo , Fermentación , Transferencia de Gen Horizontal , Oligopéptidos/genética , Péptido Hidrolasas/metabolismo , Feromonas/genética , Feromonas/metabolismo , Plásmidos , Transducción de Señal , Bacillus subtilis
4.
Proc Natl Acad Sci U S A ; 114(15): E3129-E3138, 2017 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-28351972

RESUMEN

Proteolytic processing of amyloid precursor protein (APP) C-terminal fragments (CTFs) by γ-secretase underlies the pathogenesis of Alzheimer's disease (AD). An RNA interference screen using APP-CTF [99-residue CTF (C99)]- and Notch-specific γ-secretase interaction assays identified a unique ErbB2-centered signaling network that was predicted to preferentially govern the proteostasis of APP-C99. Consistently, significantly elevated levels of ErbB2 were confirmed in the hippocampus of human AD brains. We then found that ErbB2 effectively suppressed autophagic flux by physically dissociating Beclin-1 from the Vps34-Vps15 complex independent of its kinase activity. Down-regulation of ErbB2 by CL-387,785 decreased the levels of C99 and secreted amyloid-ß in cellular, zebrafish, and mouse models of AD, through the activation of autophagy. Oral administration of an ErbB2-targeted CL-387,785 for 3 wk significantly improves the cognitive functions of APP/presenilin-1 (PS1) transgenic mice. This work unveils a noncanonical function of ErbB2 in modulating autophagy and establishes ErbB2 as a therapeutic target for AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Autofagia , Encéfalo/patología , Presenilina-1/metabolismo , Receptor ErbB-2/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Beclina-1/genética , Beclina-1/metabolismo , Encéfalo/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Presenilina-1/genética , Proteostasis , Receptor ErbB-2/genética , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo
5.
Int J Mol Sci ; 21(19)2020 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-33049945

RESUMEN

Prion protein amyloid aggregates are associated with infectious neurodegenerative diseases, known as transmissible spongiform encephalopathies. Self-replication of amyloid structures by refolding of native protein molecules is the probable mechanism of disease transmission. Amyloid fibril formation and self-replication can be affected by many different factors, including other amyloid proteins and peptides. Mouse prion protein fragments 107-143 (PrP(107-143)) and 89-230 (PrP(89-230)) can form amyloid fibrils. ß-sheet core in PrP(89-230) amyloid fibrils is limited to residues ∼160-220 with unstructured N-terminus. We employed chemical kinetics tools, atomic force microscopy and Fourier-transform infrared spectroscopy, to investigate the effects of mouse prion protein fragment 107-143 fibrils on the aggregation of PrP(89-230). The data suggest that amyloid aggregates of a short prion-derived peptide are not able to seed PrP(89-230) aggregation; however, they accelerate the self-replication of PrP(89-230) amyloid fibrils. We conclude that PrP(107-143) fibrils could facilitate the self-replication of PrP(89-230) amyloid fibrils in several possible ways, and that this process deserves more attention as it may play an important role in amyloid propagation.


Asunto(s)
Amiloide/química , Fragmentos de Péptidos/química , Proteínas Priónicas/química , Priones/química , Agregado de Proteínas , Animales , Ratones , Microscopía de Fuerza Atómica , Enfermedades por Prión/patología , Agregación Patológica de Proteínas , Conformación Proteica en Lámina beta , Proteínas Recombinantes/química , Espectroscopía Infrarroja por Transformada de Fourier
6.
Neurochem Res ; 44(6): 1399-1409, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30603982

RESUMEN

Prion diseases are transmissible fatal neurodegenerative disorders affecting humans and other mammals. The disease transmission can occur between different species but is limited by the sequence homology between host and inoculum. The crucial molecular event in the progression of this disease is prion formation, starting from the conformational conversion of the normal, membrane-anchored prion protein (PrPC) into the misfolded, ß-sheet-rich and aggregation-prone isoform (PrPSc), which then self-associates into the infectious amyloid form called prion. Amyloid is the aggregate formed from one-dimensional protein association. As amyloid formation is a key hallmark in prion pathogenesis, studying which segments in prion protein are involved in the amyloid formation can provide molecular details in the cross-species transmission barrier of prion diseases. However, due to the difficulties of studying protein aggregates, very limited knowledge about prion structure or prion formation was disclosed by now. In this study, cross-seeding assay was used to identify the segments involved in the amyloid fibril formation of full-length hamster prion protein, SHaPrP(23-231). Our results showed that the residues in the segments 108-127, 172-194 (helix 2 in PrPC) and 200-227 (helix 3 in PrPC) are in the amyloid core of hamster prion fibrils. The segment 127-143, but not 107-126 (which corresponds to hamster sequence 108-127), was previously reported to be involved in the amyloid core of full-length mouse prion fibrils. Our results indicate that hamster prion protein and mouse prion protein use different segments to form the amyloid core in amyloidogenesis. The sequence-dependent core formation can be used to explain the seeding barrier between mouse and hamster.


Asunto(s)
Amiloide/metabolismo , Fragmentos de Péptidos/metabolismo , Proteínas Priónicas/metabolismo , Animales , Cricetinae , Ratones , Multimerización de Proteína
7.
Biochem Biophys Res Commun ; 477(2): 283-9, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27301640

RESUMEN

Tau plays important roles in the assembly and stabilization of the microtubule structure to facilitate axonal transport in mammalian brain. The intracellular tau aggregates to form paired helical filaments leading to neurodegenerative disorders, collectively called tauopathies. In our previous report, we established a zebrafish model to express tau-GFP to induce neuronal death, which could be directly traced in vivo. Recently, we used this model to screen 400 herbal extracts and found 45 of them to be effective on reducing tau-GFP-induced neuronal death. One of the effective herbal extracts is the Tripterygium wilfordii stem extract. HPLC analysis and functional assay demonstrated that epicatechin (EC) is the major compound of Tripterygium wilfordii stem extract to decrease the neurotoxicity induced by tau-GFP. Using a luciferase reporter assay in the zebrafish, we confirmed that EC could activate Nrf2-dependent antioxidant responses to significantly increase the ARE-controlled expression of luciferase reporter gene. These data suggest that EC from the Tripterygium wilfordii stem extract could diminish tau-GFP-induced neuronal death through the activation of Nrf2.


Asunto(s)
Catequina/administración & dosificación , Factor 2 Relacionado con NF-E2/metabolismo , Neuronas/metabolismo , Neuronas/patología , Tripterygium/química , Proteínas de Pez Cebra/metabolismo , Proteínas tau/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Embrión no Mamífero/patología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/administración & dosificación , Extractos Vegetales/administración & dosificación , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Pez Cebra , Proteínas tau/genética
8.
J Mol Biol ; 436(11): 168576, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38641239

RESUMEN

Prions, the misfolding form of prion proteins, are contagious proteinaceous macromolecules. Recent studies have shown that infectious prion fibrils formed in the brain and non-infectious fibrils formed from recombinant prion protein in a partially denaturing condition have distinct structures. The amyloid core of the in vitro-prepared non-infectious fibrils starts at about residue 160, while that of infectious prion fibrils formed in the brain involves a longer sequence (residues ∼90-230) of structural conversion. The C-terminal truncated prion protein PrP(23-144) can form infectious fibrils under certain conditions and cause disease in animals. In this study, we used cryogenic electron microscopy (cryo-EM) to resolve the structure of hamster sHaPrP(23-144) fibrils prepared at pH 3.7. This 2.88 Å cryo-EM structure has an amyloid core covering residues 94-144. It comprises two protofilaments, each containing five ß-strands arranged as a long hairpin plus an N-terminal ß-strand. This N-terminal ß-strand resides in a positively charged cluster region (named PCC2; sequence 96-111), which interacts with the turn region of the opposite protofilaments' hairpin to stabilize the fibril structure. Interestingly, this sHaPrP(23-144) fibril structure differs from a recently reported structure formed by the human or mouse counterpart at pH 6.5. Moreover, sHaPrP(23-144) fibrils have many structural features in common with infectious prions. Whether this structure is infectious remains to be determined. More importantly, the sHaPrP(23-144) structure is different from the sHaPrP(108-144) fibrils prepared in the same fibrillization buffer, indicating that the N-terminal disordered region, possibly the positively charged cluster, influences the misfolding pathway of the prion protein.


Asunto(s)
Amiloide , Proteínas Priónicas , Pliegue de Proteína , Animales , Cricetinae , Amiloide/química , Microscopía por Crioelectrón/métodos , Modelos Moleculares , Proteínas Priónicas/química , Proteínas Priónicas/genética , Conformación Proteica
9.
Biochim Biophys Acta ; 1820(11): 1774-86, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22884915

RESUMEN

BACKGROUND: More than twenty-seven human proteins can fold abnormally to form amyloid deposits associated with a number of degenerative diseases. The research reported here is aimed at exploring the connection between curcumin's thermostability and its inhibitory activity toward the amyloid fibrillation of hen egg-white lysozyme (HEWL). METHODS: ThT fluorescence spectroscopy, equilibrium thermal denaturation analysis, and transmission electron microscopy were employed for structural characterization. MTT reduction and flow cytometric analyses were used to examine cell viability. RESULTS AND CONCLUSION: The addition of thermally pre-treated curcumin was found to attenuate the formation of HEWL fibrils and the observed fibrillation inhibition was dependent upon the pre-incubation temperature of curcumin. Our results also demonstrated that the cytotoxic effects of fibrillar HEWL species on PC 12 and SH-SY5Y cells were decreased and negatively correlated with curcumin's thermostability. Next, an enhanced stability of HEWL was perceived upon the addition of curcumin pre-incubated at lower temperature. Furthermore, we found that the alteration of curcumin's thermostability was associated with its inhibitory potency against HEWL fibrillation. GENERAL SIGNIFICANCE: We believe that the results from this research may contribute to the development of effective therapeutics for amyloidoses.


Asunto(s)
Amiloide/antagonistas & inhibidores , Curcumina/farmacología , Muramidasa/farmacología , Amiloidosis/tratamiento farmacológico , Animales , Supervivencia Celular/efectos de los fármacos , Curcumina/química , Citometría de Flujo , Muramidasa/química , Células PC12 , Pliegue de Proteína , Ratas , Espectrofotometría Ultravioleta , Temperatura , Termodinámica
10.
Amino Acids ; 45(4): 785-96, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23736988

RESUMEN

The amino acid sequences in the amyloidogenic region (amino acids 108-144) of several mammalian prion proteins were compared and variations were found to occur at residues 109 (M or L), 112 (M or V), 129 (M, V, or L), 135 (N or S), 138 (M, L, or I), 139 (M or I), and 143 (N or S). Using the bovine PrP peptide (residues 108-144 based on the numbering of the human prion protein sequence) as a control peptide, several peptides with one amino acid differing from that of the bovine PrP peptide at residues 109, 112, 135, 138, 139, or 143 and several mammalian PrP peptides were synthesized, and the effects of these amino acid substitutions on the amyloidogenic properties of these peptides were compared and discussed on the basis of the chemical and structural properties of amino acids. Our results showed that the V112M substitution accelerated nucleation of amyloidogenesis, while the N143S and I139M substitutions retarded nucleation. These effects tended to cancel each other out when two substitutions with opposite effects were present on the same peptide. Moreover, acceleration or inhibition of nucleation was not necessarily correlated with effect on seeding efficiency. Using amyloid fibrils prepared from the bovine PrP peptide as seeds, the seeding efficiency for the monomer peptides with the M129L, S135N, N143S, or I139M substitution was decreased compared to that for bPrP peptide. Of all the mammalian peptides used in this study, the dog, mule deer, and pig PrP peptides had the lowest seeding efficiencies.


Asunto(s)
Aminoácidos/química , Proteínas Amiloidogénicas/química , Priones/química , Animales , Bovinos , Ciervos , Perros , Humanos , Porcinos
11.
Methods Mol Biol ; 2551: 633-647, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36310229

RESUMEN

Amyloidogenesis, self-propagation of protein or peptide monomers to amyloid fibrils, has been linked to incurable pathogenesis of neurodegenerative diseases such as Alzheimer's disease and prion diseases. Investigations of amyloid structures and how monomers are transformed through seeding are therefore crucial for developing therapeutics toward these diseases. Here we describe a cross-seeding method to explore the amyloid core in prion fibrils that uses preformed amyloid fibrils as a seed to induce the transformation of other protein or peptide monomers to amyloid fibrils.


Asunto(s)
Amiloidosis , Enfermedades por Prión , Priones , Humanos , Amiloide/química , Priones/química , Proteínas Amiloidogénicas
12.
PNAS Nexus ; 2(5): pgad162, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37265546

RESUMEN

Nearly 95% of Alzheimer's disease (AD) occurs sporadically without genetic linkage. Aging, hypertension, high cholesterol content, and diabetes are known nongenomic risk factors of AD. Aggregation of Aß peptides is an initial event of AD pathogenesis. Aß peptides are catabolic products of a type I membrane protein called amyloid precursor protein (APP). Aß40 is the major product, whereas the 2-residue-longer version, Aß42, induces amyloid plaque formation in the AD brain. Since cholesterol content is one risk factor for sporadic AD, we aimed to explore whether cholesterol in the membrane affects the structure of the APP transmembrane region, thereby modulating the γ-secretase cutting behavior. Here, we synthesized several peptides containing the APP transmembrane region (sequence 693-726, corresponding to the Aß22-55 sequence) with one or two Cys mutations for spin labeling. We performed three electron spin resonance experiments to examine the structural changes of the peptides in liposomes composed of dioleoyl phosphatidylcholine and different cholesterol content. Our results show that cholesterol increases membrane thickness by 10% and peptide length accordingly. We identified that the di-glycine region of Aß36-40 (sequence VGGVV) exhibits the most profound change in response to cholesterol compared with other segments, explaining how the presence of cholesterol affects the γ-secretase cutting site. This study provides spectroscopic evidence showing how cholesterol modulates the structure of the APP transmembrane region in a lipid bilayer.

13.
Nat Commun ; 14(1): 5464, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37673860

RESUMEN

The abuse of antibiotics has led to the emergence of multidrug-resistant microbial pathogens, presenting a pressing challenge in global healthcare. Membrane-disrupting antimicrobial peptides (AMPs) combat so-called superbugs via mechanisms different than conventional antibiotics and have good application prospects in medicine, agriculture, and the food industry. However, the mechanism-of-action of AMPs has not been fully characterized at the cellular level due to a lack of high-resolution imaging technologies that can capture cellular-membrane disruption events in the hydrated state. Previously, we reported PepD2M, a de novo-designed AMP with potent and wide-spectrum bactericidal and fungicidal activity. In this study, we use cryo-electron tomography (cryo-ET) and high-speed atomic force microscopy (HS-AFM) to directly visualize the pepD2M-induced disruption of the outer and inner membranes of the Gram-negative bacterium Escherichia coli, and compared with a well-known pore-forming peptide, melittin. Our high-resolution cryo-ET images reveal how pepD2M disrupts the E. coli membrane using a carpet/detergent-like mechanism. Our studies reveal the direct membrane-disrupting consequence of AMPs on the bacterial membrane by cryo-ET, and this information provides critical insights into the mechanisms of this class of antimicrobial agents.


Asunto(s)
Péptidos Antimicrobianos , Tomografía con Microscopio Electrónico , Escherichia coli , Fenómenos Fisiológicos Celulares , Antibacterianos/farmacología
14.
Eur Biophys J ; 41(2): 189-98, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22068826

RESUMEN

A ubiquitin mutant with two Cys mutations, m[C]q/S65C, was site-specifically labeled with two dye molecules, Alexa Fluor 488 (donor) and Alexa Fluor 594 (acceptor), due to the different reactivity of these two Cys residues. This doubly dye-labeled ubiquitin has lower structural stability than wild-type ubiquitin. Taking advantage of this decreased stability, conformational heterogeneity of this protein under nondenaturing condition was observed at the single-molecule level using single-paired Förster resonance energy transfer (FRET) by trapping the protein in agarose gel. Three conformational populations corresponding to folded (E (ET) ≈ 0.95), loosely packed (E (ET) ≈ 0.72), and unfolded (E (ET) ≈ 0.22) structures, and the structural transitions between them were observed. Our results suggest that agarose immobilization is good for observing structural dynamics of proteins under native condition.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas Inmovilizadas/química , Desplegamiento Proteico , Sefarosa/química , Ubiquitina/química , Colorantes Fluorescentes/química , Geles , Humanos , Modelos Moleculares , Conformación Proteica
15.
Protein Sci ; 31(6): e4326, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35634767

RESUMEN

Prion diseases are transmissible fatal neurodegenerative disorders spreading between humans and other mammals. The pathogenic agent, prion, is a protease-resistant, ß-sheet-rich protein aggregate, converted from a membrane protein called PrPC . PrPSc is the misfolded form of PrPC and undergoes self-propagation to form the infectious amyloids. Since the key hallmark of prion disease is amyloid formation, identifying and studying which segments are involved in the amyloid core can provide molecular details about prion diseases. It has been known that the prion protein could also form non-infectious fibrils in the presence of denaturants. In this study, we employed a combination of site-directed nitroxide spin-labeling, fibril seeding, and electron spin resonance (ESR) spectroscopy to identify the structure of the in vitro-prepared full-length mouse prion fibrils. It is shown that in the in vitro amyloidogenesis, the formation of the amyloid core is linked to an α-to-ß structural transformation involving the segment 160-224, which contains strand 2, helix 2, and helix 3. This method is particularly suitable for examining the hetero-seeded amyloid fibril structure, as the unlabeled seeds are invisible by ESR spectroscopy. It can be applied to study the structures of different strains of infectious prions or other amyloid fibrils in the future.


Asunto(s)
Enfermedades por Prión , Priones , Amiloide/química , Proteínas Amiloidogénicas , Animales , Espectroscopía de Resonancia por Spin del Electrón/métodos , Mamíferos , Ratones , Proteínas Priónicas/metabolismo , Priones/metabolismo
16.
Biomedicines ; 9(8)2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34440159

RESUMEN

BACKGROUND: Alzheimer's disease (AD) involves impairment of Aß clearance. Neprilysin (NEP) is the most efficient Aß peptidase. Enhancement of the activity or expression of NEP may provide a prominent therapeutic strategy against AD. AIMS: Ten hydroxylated monocarbonyl curcumin derivatives were designed, synthesized and evaluated for their NEP upregulating potential using sensitive fluorescence-based Aß digestion and inhibition assays. RESULTS: Compound 4 was the most active one, resulting in a 50% increase in Aß cleavage activity. Cyclohexanone-bearing derivatives exhibited higher activity enhancement compared to their acetone counterparts. Inhibition experiments with the NEP-specific inhibitor thiorphan resulted in dramatic cleavage reduction. Conclusion: The increased Aß cleavage activity and the ease of synthesis of 4 renders it an extremely attractive lead compound.

17.
Front Plant Sci ; 12: 753217, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34659322

RESUMEN

Plant diseases are important issues in agriculture, and the development of effective and environment-friendly means of disease control is crucial and highly desired. Antimicrobial peptides (AMPs) are known as potential alternatives to chemical pesticides because of their potent broad-spectrum antimicrobial activity and because they have no risk, or have only a low risk, of developing chemical-resistant pathogens. In this study, we designed a series of amphipathic helical peptides with different spatial distributions of positive charges and found that the peptides that had a special sequence pattern "BBHBBHHBBH" ("B" for basic residue and "H" for hydrophobic residue) displayed excellent bactericidal and fungicidal activities in a wide range of economically important plant pathogens. The peptides with higher helical propensity had lower antimicrobial activity. When we modified the peptides with a long acyl chain at their N-terminus, their plant protection effect improved. Our application of the fatty acyl-modified peptides on the leaves of tomato and Arabidopsis plants lessened the infection caused by Pectobacterium carotovorum subsp. carotovorum and Botrytis cinerea. Our study provides important insights on the development of more potent novel AMPs for plant protection.

18.
Front Microbiol ; 12: 678330, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34220763

RESUMEN

Searching for new antimicrobials is a pressing issue to conquer the emergence of multidrug-resistant (MDR) bacteria and fungi. Antimicrobial peptides (AMPs) usually have antimicrobial mechanisms different from those of traditional antibiotics and bring new hope in the discovery of new antimicrobials. In addition to antimicrobial activity, stability and target selectivity are important concerns to decide whether an antimicrobial peptide can be applied in vivo. Here, we used a simple de novo designed peptide, pepD2, which contains only three kinds of amino acid residues (W, K, L), as an example to evaluate how the residues and modifications affect the antimicrobial activity against Acinetobacter baumannii, stability in plasma, and toxicity to human HEK293 cells. We found that pepI2 with a Leu→Ile substitution can decrease the minimum bactericidal concentrations (MBC) against A. baumannii by one half (4 µg/mL). A D-form peptide, pepdD2, in which the D-enantiomers replaced the L-enantiomers of the Lys(K) and Leu(L) residues, extended the peptide half-life in plasma by more than 12-fold. PepD3 is 3-residue shorter than pepD2. Decreasing peptide length did not affect antimicrobial activity but increased the IC50 to HEK293 cells, thus increased the selectivity index (SI) between A. baumannii and HEK293 cells from 4.7 to 8.5. The chain length increase of the N-terminal acyl group and the Lys→Arg substitution greatly enhanced the hemolytic activity, hence those modifications are not good for clinical application. Unlike colistin, the action mechanism of our peptides relies on negatively charged lipids rather than lipopolysaccharides. Therefore, not only gram-negative bacteria but also gram-positive bacteria can be killed by our peptides.

20.
Proteins ; 78(14): 2973-83, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-20737588

RESUMEN

Kinetic measurement of protein folding is limited by the method used to trigger folding. Traditional methods, such as stopped flow, have a long mixing dead time and cannot be used to monitor fast folding processes. Here, we report a compound, 4-(bromomethyl)-6,7-dimethoxycoumarin, that can be used as a "photolabile cage" to study the early stages of protein folding. The folding process of a protein, RD1, including kinetics, enthalpy, and volume change, was studied by the combined use of a phototriggered caging strategy and time-resolved photoacoustic calorimetry. The cage caused unfolding of the photolabile protein, and then a pulse UV laser (∼10(-9) s) was used to break the cage, leaving the protein free to refold and allowing the resolving of two folding events on a nanosecond time scale. This strategy is especially good for monitoring fast folding proteins that cannot be studied by traditional methods.


Asunto(s)
Proteínas Anticongelantes Tipo III/química , Cumarinas/química , Rayos Láser , Pliegue de Proteína , Rayos Ultravioleta , Secuencia de Aminoácidos , Calorimetría , Dicroismo Circular , Simulación por Computador , Cinética , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA