Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nature ; 610(7931): 296-301, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36224420

RESUMEN

The water-splitting reaction using photocatalyst particles is a promising route for solar fuel production1-4. Photo-induced charge transfer from a photocatalyst to catalytic surface sites is key in ensuring photocatalytic efficiency5; however, it is challenging to understand this process, which spans a wide spatiotemporal range from nanometres to micrometres and from femtoseconds to seconds6-8. Although the steady-state charge distribution on single photocatalyst particles has been mapped by microscopic techniques9-11, and the charge transfer dynamics in photocatalyst aggregations have been revealed by time-resolved spectroscopy12,13, spatiotemporally evolving charge transfer processes in single photocatalyst particles cannot be tracked, and their exact mechanism is unknown. Here we perform spatiotemporally resolved surface photovoltage measurements on cuprous oxide photocatalyst particles to map holistic charge transfer processes on the femtosecond to second timescale at the single-particle level. We find that photogenerated electrons are transferred to the catalytic surface quasi-ballistically through inter-facet hot electron transfer on a subpicosecond timescale, whereas photogenerated holes are transferred to a spatially separated surface and stabilized through selective trapping on a microsecond timescale. We demonstrate that these ultrafast-hot-electron-transfer and anisotropic-trapping regimes, which challenge the classical perception of a drift-diffusion model, contribute to the efficient charge separation in photocatalysis and improve photocatalytic performance. We anticipate that our findings will be used to illustrate the universality of other photoelectronic devices and facilitate the rational design of photocatalysts.

2.
J Am Chem Soc ; 145(8): 4667-4674, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36795953

RESUMEN

Charge transfer at the semiconductor/solution interface is fundamental to photoelectrocatalytic water splitting. Although insights into charge transfer in the electrocatalytic process can be gained from the phenomenological Butler-Volmer theory, there is limited understanding of interfacial charge transfer in the photoelectrocatalytic process, which involves intricate effects of light, bias, and catalysis. Here, using operando surface potential measurements, we decouple the charge transfer and surface reaction processes and find that the surface reaction enhances the photovoltage via a reaction-related photoinduced charge transfer regime as demonstrated on a SrTiO3 photoanode. We show that the reaction-related charge transfer induces a change in the surface potential that is linearly correlated to the interfacial charge transfer rate of water oxidation. The linear behavior is independent of the applied bias and light intensity and reveals a general rule for interfacial transfer of photogenerated minority carriers. We anticipate the linear rule to be a phenomenological theory for describing interfacial charge transfer in photoelectrocatalysis.

3.
J Am Chem Soc ; 145(30): 16852-16861, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37466142

RESUMEN

The inert C(sp3)-H bond and easy overoxidation of toluene make the selective oxidation of toluene to benzaldehyde a great challenge. Herein, we present that a photocatalyst, constructed with a small amount (1 mol %) of amorphous BiOCl nanosheets assembled on TiO2 (denoted as 0.01BOC/TiO2), shows excellent performance in toluene oxidation to benzaldehyde, with 85% selectivity at 10% conversion, and the benzaldehyde formation rate is up to 1.7 mmol g-1 h-1, which is 5.6 and 3.7 times that of bare TiO2 and BOC, respectively. In addition to the charge separation function of the BOC/TiO2 heterojunction, we found that the amorphous structure of BOC endows its abundant surface oxygen vacancies (Ov), which can further promote the charge separation. Most importantly, the surface Ov of amorphous BOC can efficiently adsorb and activate O2, and amorphous BOC makes the product, benzaldehyde, easily desorb from the catalyst surface, which alleviates the further oxidation of benzaldehyde, and results in the high selectivity. This work highlights the importance of the microstructure based on heterojunctions, which is conducive to the rational design of photocatalysts with high performance in organic synthesis.

4.
Angew Chem Int Ed Engl ; 62(21): e202302575, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36959093

RESUMEN

The interfacial barrier of charge transfer from semiconductors to cocatalysts means that the photogenerated charges cannot be fully utilized, especially for the challenging water oxidation reaction. Using cobalt cubane molecules (Co4 O4 ) as water oxidation cocatalysts, we rationally assembled partially oxidized graphene (pGO), acting as a charge-transfer mediator, on the hole-accumulating {-101} facets of lead chromate (PbCrO4 ) crystal. The assembled pGO enables preferable immobilization of Co4 O4 molecules on the {-101} facets of the PbCrO4 crystal, which is favorable for the photogenerated holes transferring from PbCrO4 to Co4 O4 molecules. The surface charge-transfer efficiency of PbCrO4 was boosted by selective assembly of pGO between PbCrO4 and Co4 O4 molecules. An apparent quantum efficiency for photocatalytic water oxidation on the Co4 O4 /pGO/PbCrO4 photocatalyst exceeded 10 % at 500 nm. This strategy of rationally assembling charge-transfer mediator provides a feasible method for acceleration of charge transfer and utilization in semiconductor photocatalysis.

5.
Nano Lett ; 21(20): 8901-8909, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34647747

RESUMEN

The involvement between electron transfer (ET) and catalytic reaction at the electrocatalyst surface makes the electrochemical process challenging to understand and control. Even ET process, a primary step, is still ambiguous because it is unclear how the ET process is related to the nanostructured electrocatalyst. Herein, locally enhanced ET current dominated by mass transport effect at corner and edge sites bounded by {111} facets on single Au triangular nanoplates was clearly imaged. After decoupling mass transport effect, the ET rate constant of corner sites was measured to be about 2-fold that of basal {111} plane. Further, we demonstrated that spatial heterogeneity of local inner potential differences of Au nanoplates/solution interfaces plays a key role in the ET process, supported by the linear correlation between the logarithm of rate constants and the potential differences of different sites. These results provide direct images for heterogeneous ET, which helps to understand and control the nanoscopic electrochemical process and electrode design.

6.
Angew Chem Int Ed Engl ; 61(16): e202117567, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35100475

RESUMEN

The photocatalytic conversion of solar energy offers a potential route to renewable energy, and its efficiency relies on effective charge separation in nanostructured photocatalysts. Understanding the charge-separation mechanism is key to improving the photocatalytic performance and this has now been enabled by advances in the spatially resolved surface photovoltage (SRSPV) method. In this Review we highlight progress made by SRSPV in mapping charge distributions at the nanoscale and determining the driving forces of charge separation in heterogeneous photocatalyst particles. We discuss how charge separation arising from a built-in electric field, diffusion, and trapping can be exploited and optimized through photocatalyst design. We also highlight the importance of asymmetric engineering of photocatalysts for effective charge separation. Finally, we provide an outlook on further opportunities that arise from leveraging these insights to guide the rational design of photocatalysts and advance the imaging technique to expand the knowledge of charge separation.

7.
Angew Chem Int Ed Engl ; 61(37): e202207161, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-35716112

RESUMEN

A crucial issue in artificial photosynthesis is how to modulate the behaviors of photogenerated charges of semiconductor photocatalysts. Here, using lead chromate (PbCrO4 ) as an example, we conducted the morphology tailoring from parallelepiped (p-PbCrO4 ) to truncated decahedron (t-PbCrO4 ) and elongated rhombic (r-PbCrO4 ), resulting in exposed anisotropic facets. The spatial separation of photogenerated charges closely correlates to the anisotropic facets of crystals, which can only be realized for t-PbCrO4 and r-PbCrO4 . The charge-separation efficiencies exhibit a quasilinear relation with the surface photovoltage difference between anisotropic facets. The r-PbCrO4 gives an apparent quantum efficiency of 6.5 % at 500 nm for photocatalytic water oxidation using Fe3+ ions as electron acceptors. Moreover, the oxidation reverse reaction from Fe2+ to Fe3+ ions was completely blocked with ∼100 % of Fe3+ conversion achieved on the anisotropic PbCrO4 crystals.

8.
Small ; 17(49): e2103224, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34611983

RESUMEN

Photocatalysis offers a sustainable strategy for hydrogen peroxide (H2 O2 ) production, which is an essential oxidant and emerging energy carrier in modern chemical industry. The development of polymer-based photocatalysts to produce H2 O2 has great potential but is limited by lower efficiency due to the limitation of light utilization and the low charge separation efficiency. Herein, a series of monodispersed mesoporous resorcinol-formaldehyde resin spheres (MRFS) are reported with a rational designed spatial charge distribution, exhibiting wide light absorption with a solar-to-chemical conversion (SCC) efficiency of 1.1%. Surface photovoltage microscopy (SPVM) measurements unraveled the charge separation in nanospace with uneven distribution of donor (D) and acceptor (A) sites. A density functional theory (DFT) calculation elucidated the origin of photogenerated electrons and holes. Moreover, MRFS demonstrates photocatalytic water oxidation ability. The findings in this work open a new avenue for the development of porous polymeric photocatalysts toward highly efficient solar energy conversion.

9.
Nano Lett ; 19(1): 426-432, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30585727

RESUMEN

Defects can markedly impact the performance of semiconductor-based photocatalysts, where the spatial separation of photogenerated charges is required for converting solar energy into fuels. However, understanding exactly how defects affect photogenerated charge separation at nanometer scale remains quite challenging. Here, using time- and space-resolved surface photovoltage approaches, we demonstrate that the distribution of surface photogenerated charges and the direction of photogenerated charge separation are determined by the defects distributed within a 100 nm surface region of a photocatalytic Cu2O particle. This is enabled by the defect-induced charge separation process, arising from the trapping of electrons at the near-surface defect states and the accumulation of holes at the surface states. More importantly, the driving force for defect-induced charge separation is greater than 4.2 kV/cm and can be used to drive photocatalytic reactions. These findings highlight the importance of near-surface defect engineering in promoting photogenerated charge separation and manipulating surface photogenerated charges; further, they open up a powerful avenue for improving photocatalytic charge separation and solar energy conversion efficiency.

10.
Chem Soc Rev ; 47(22): 8238-8262, 2018 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-30059114

RESUMEN

Understanding photogenerated charge separation on the nano- to micrometer scale is the key to optimizing the photocatalytic solar energy conversion efficiency. In the past few years, spatially resolved surface photovoltage (SPV) techniques have opened up new opportunities to directly image localized charge separation at surfaces or interfaces of photocatalysts and thus provided deep insights into the understanding of photocatalysis. In this review, we reviewed the SPV techniques, in particular Kelvin probe force microscopy (KPFM) based spatially resolved SPV techniques and their applications in charge separation imaging. The SPV principle was explained with regard to charge separation across a space charge region (SCR) in a depletion layer at a semiconductor surface and to diffusion. The center of charge approach, relaxation of SPV signals and measurement of SPV signals including SPV transients with fixed capacitors were described. Then, we highlighted the fundamental principle and development of the spatially resolved SPV technique and its application in photocatalysis. Important progress made by the spatially resolved SPV technique in this group is given, focusing on understanding the nature of charge separation and providing insights into the rational design of highly efficient photocatalytic systems. Finally, we discuss the prospects of further developments of the spatially resolved SPV technique that would help in understanding photocatalysis for solar energy conversion with high temporal resolution and operated under in operando conditions.

11.
J Am Chem Soc ; 140(9): 3250-3256, 2018 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-29338218

RESUMEN

It has been anticipated that learning from nature photosynthesis is a rational and effective way to develop artificial photosynthesis system, but it is still a great challenge. Here, we assembled a photoelectrocatalytic system by mimicking the functions of photosystem II (PSII) with BiVO4 semiconductor as a light harvester protected by a layered double hydroxide (NiFeLDH) as a hole storage layer, a partially oxidized graphene (pGO) as biomimetic tyrosine for charge transfer, and molecular Co cubane as oxygen evolution complex. The integrated system exhibited an unprecedentedly low onset potential (0.17 V) and a high photocurrent (4.45 mA cm-2), with a 2.0% solar to hydrogen efficiency. Spectroscopic studies revealed that this photoelectrocatalytic system exhibited superiority in charge separation and transfer by benefiting from mimicking the key functions of PSII. The success of the biomimetic strategy opened up new ways for the rational design and assembly of artificial photosynthesis systems for efficient solar-to-fuel conversion.


Asunto(s)
Materiales Biomiméticos/química , Bismuto/química , Complejo de Proteína del Fotosistema II/química , Semiconductores , Vanadatos/química , Agua/química , Biomimética , Catálisis , Grafito/química , Hidrógeno/química , Luz , Oxidación-Reducción , Oxígeno/química , Fotosíntesis , Energía Solar
12.
Nano Lett ; 17(11): 6735-6741, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-28967261

RESUMEN

The cocatalysts or dual cocatalysts of photocatalysts are indispensable for high efficiency in artificial photosynthesis for solar fuel production. However, the reaction activity increased by cocatalysts cannot be directly ascribed to the accelerated catalytic kinetics, since photogenerated charges are involved in the elementary steps of photocatalytic reactions. To date, diverging views about cocatalysts show that their exact role for photocatalysis is not well understood yet. Herein, we image directly the local separation of photogenerated charge carriers across single crystals of the BiVO4 photocatalyst which loaded locally with nanoparticles of a MnOx single cocatalyst or with nanoparticles of a spatially separated MnOx and Pt dual cocatalyst. The deposition of the single cocatalyst resulted not only in a strong increase of the interfacial charge transfer but also, surprisingly, in a change of the direction of built-in electric fields beneath the uncovered surface of the photocatalyst. The additive electric fields caused a strong increase of local surface photovoltage signals (up to 80 times) and correlated with the increase of the photocatalytic performance. The local electric fields were further increased (up to 2.5 kV·cm-1) by a synergetic effect of the spatially separated dual cocatalysts. The results reveal that cocatalyst has a conclusive effect on charge separation in photocatalyst particle by aligning the vectors of built-in electric fields in the photocatalyst particle. This effect is beyond its catalytic function in thermal catalysis.

13.
Faraday Discuss ; 198: 473-479, 2017 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-28267165

RESUMEN

Kelvin Probe Force Microscopy (KPFM) and spatially resolved surface photovoltage (SRSPV) techniques were employed to reveal built-in electric fields and surface photogenerated charge distribution on single particulate photocatalysts. The photogenerated holes and electrons spread over the whole surface of the particulate photocatalyst are imaged on n-type BiVO4 and p-type Cu2O single particles, respectively. It is demonstrated that the built-in electric field in the surface Space Charge Region (SCR) dictates the charge separation/transfer processes and allows the drift of one kind of the photogenerated carriers to the surface, while holding another kind of the carriers in the bulk. The results emphasize the role of the SCR played in the unidirectional charge transport between the bulk and surface in the particulate photocatalyst, which may be the crucial reason for low solar energy conversion efficiency.

14.
J Am Chem Soc ; 138(41): 13664-13672, 2016 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-27653158

RESUMEN

The photoanodes with heterojunction behavior could enable the development of solar energy conversion, but their performance largely suffers from the poor charge separation and transport process through the multiple interfacial energy levels involved. The question is how to efficiently manipulate these energy levels. Taking the n-Si Schottky photoanode as a prototype, the undesired donor-like interfacial defects and its adverse effects on charge transfer in n-Si/ITO photoanode are well recognized and diminished through the treatment on electronic energy level. The obtained n-Si/TiOx/ITO Schottky junction exhibits a highly efficient charge transport and a barrier height of 0.95 eV, which is close to the theoretical optimum for n-Si/ITO Schottky contact. Then, the holes extraction can be further facilitated through the variation of surface energy level, with the NiOOH coated ITO layer. This is confirmed by a 115% increase in surface photovoltage of the photoanodes. Eventually, an unprecedentedly low onset potential of 0.9 V (vs RHE) is realized for water oxidation among n-Si photoanodes. For the water oxidation reaction, the n-Si/TiOx/ITO/NiOOH photoanode presents a charge separation efficiency up to 100% and an injection efficiency greater than 90% at a wide voltage range. This work identifies the important role of interfacial energetics played in photoelectrochemical conversion.

16.
Chemistry ; 21(41): 14337-41, 2015 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-26332275

RESUMEN

Spatial separation of reduction sites and oxidation sites to inhibit the recombination of photogenerated electrons and holes plays a vital role in improving the efficiency of photocatalyst systems. It is very challenging to rationally deposit cocatalysts on the right facets (sites), namely, the reduction cocatalyst on the reduction facets (sites) and the oxidation cocatalyst on the oxidation facets (sites). Herein, we report that the reduction and oxidation cocatalysts can be selectively constructed on the different facets of p-type Cu2 O crystals with anisotropic facets, but not on the Cu2 O crystal with isotropic facets. The deposition of dual cocatalysts on the different facets resulted in a remarkable synergetic effect in the photocatalytic performance, which could be attributed to the spatial separation of the photogenerated charges between facets. Our work reports an instructive strategy for constructing high-efficiency photocatalyst systems for solar energy conversion.

17.
Angew Chem Int Ed Engl ; 54(31): 9111-4, 2015 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-26147488

RESUMEN

Spatially resolved surface photovoltage spectroscopy (SRSPS) was employed to obtain direct evidence for highly anisotropic photogenerated charge separation on different facets of a single BiVO4 photocatalyst. Through the controlled synthesis of a single crystal with preferentially exposed {010} facets, highly anisotropic photogenerated hole transfer to the {011} facet of single BiVO4 crystals was observed. The surface photovoltage signal intensity on the {011} facet was 70 times stronger than that on the {010} facets. The influence of the built-in electric field in the space charge region of different facets on the anisotropic photoinduced charge transfer in a single semiconductor crystal is revealed.

18.
Nat Protoc ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654135

RESUMEN

Solar-driven photocatalytic reactions offer a promising route to clean and sustainable energy, and the spatial separation of photogenerated charges on the photocatalyst surface is the key to determining photocatalytic efficiency. However, probing the charge-separation properties of photocatalysts is a formidable challenge because of the spatially heterogeneous microstructures, complicated charge-separation mechanisms and lack of sensitivity for detecting the low density of separated photogenerated charges. Recently, we developed surface photovoltage microscopy (SPVM) with high spatial and energy resolution that enables the direct mapping of surface-charge distributions and quantitative assessment of the charge-separation properties of photocatalysts at the nanoscale, potentially providing unprecedented insights into photocatalytic charge-separation processes. Here, this protocol presents detailed procedures that enable researchers to construct the SPVM instruments by integrating Kelvin probe force microscopy with an illumination system and the modulated surface photovoltage (SPV) approach. It then describes in detail how to perform SPVM measurements on actual photocatalyst particles, including sample preparation, tuning of the microscope, adjustment of the illuminated light path, acquisition of SPVM images and measurements of spatially resolved modulated SPV signals. Moreover, the protocol also includes sophisticated data analysis that can guide non-experts in understanding the microscopic charge-separation mechanisms. The measurements are ordinarily performed on photocatalysts with a conducting substrate in gases or vacuum and can be completed in 15 h.

19.
Nat Commun ; 15(1): 1672, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395923

RESUMEN

The practical applications of solar-driven water splitting pivot on significant advances that enable scalable production of robust photoactive films. Here, we propose a proof-of-concept for fabricating robust photoactive films by a particle-implanting technique (PiP) which embeds semiconductor photoabsorbers in the liquid metal. The strong semiconductor/metal interaction enables resulting films efficient collection of photogenerated charges and superior photoactivity. A photoanode of liquid-metal embraced BiVO4 can stably operate over 120 h and retain ~ 70% of activity when scaled from 1 to 64 cm2. Furthermore, a Z-scheme photocatalyst film of liquid-metal embraced BiVO4 and Rh-doped SrTiO3 particles can drive overall water splitting under visible light, delivering an activity 2.9 times higher than that of the control film with gold support and a 110 h stability. These results demonstrate the advantages of the PiP technique in constructing robust and efficient photoactive films for artificial photosynthesis.

20.
Sci Adv ; 10(11): eadj7867, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38478611

RESUMEN

The voltage-gated ion channels, also known as ionic transistors, play substantial roles in biological systems and ion-ion selective separation. However, implementing the ultrafast switchable capabilities and polarity switching of ionic transistors remains a challenge. Here, we report a nanofluidic ionic transistor based on carbon nanotubes, which exhibits an on/off ratio of 104 at operational gate voltage as low as 1 V. By controlling the morphology of carbon nanotubes, both unipolar and ambipolar ionic transistors are realized, and their on/off ratio can be further improved by introducing an Al2O3 dielectric layer. Meanwhile, this ionic transistor enables the polarity switching between p-type and n-type by controlled surface properties of carbon nanotubes. The implementation of constructing ionic circuits based on ionic transistors is demonstrated, which enables the creation of NOT, NAND, and NOR logic gates. The ionic transistors are expected to have profound implications for low-energy consumption computing devices and brain-machine interfacing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA