Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Anal Chem ; 96(22): 9016-9025, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38780636

RESUMEN

Despite recent advancements in colorectal cancer (CRC) treatment, the prognosis remains unfavorable primarily due to high recurrence and liver metastasis rates. Fluorescence molecular imaging technologies, combined with specific probes, have gained prominence in facilitating real-time tumor resection guided by fluorescence. Hepatocyte growth factor (HGF) is overexpressed in CRC, but the advancement of HGF fluorescent probes has been impeded by the absence of effective HGF-targeting small-molecular ligands. Herein, we present the targeted capabilities of the novel V-1-GGGK-MPA probe labeled with a near-infrared fluorescent dye, which targets HGF in CRC. The V-1-GGGK peptide exhibits high specificity and selectivity for HGF-positive in vitro tumor cells and in vivo tumors. Biodistribution analysis of V-1-GGGK-MPA revealed tumor-specific accumulation with low background uptake, yielding signal-to-noise ratio (SNR) values of tumor-to-colorectal >6 in multiple subcutaneous CRC models 12 h postinjection. Quantitative analysis confirmed the probe's high uptake in SW480 and HT29 orthotopic and liver metastatic models, with SNR values of tumor-to-colorectal and -liver being 5.6 ± 0.4, 4.6 ± 0.5, and 2.1 ± 0.3, 2.0 ± 0.5, respectively, enabling precise tumor visualization for surgical navigation. Pathological analysis demonstrated the excellent tumor boundaries discrimination capacity of the V-1-GGGK-MPA probe at the molecular level. With its rapid tumor targeting, sustained tumor retention, and precise tumor boundary delineation, V-1-GGGK-MPA merges as a promising HGF imaging agent, enriching the toolbox of intraoperative navigational fluorescent probes for CRC.


Asunto(s)
Neoplasias Colorrectales , Colorantes Fluorescentes , Factor de Crecimiento de Hepatocito , Imagen Óptica , Colorantes Fluorescentes/química , Factor de Crecimiento de Hepatocito/metabolismo , Neoplasias Colorrectales/diagnóstico por imagen , Neoplasias Colorrectales/patología , Humanos , Animales , Ratones , Ratones Desnudos , Distribución Tisular , Ratones Endogámicos BALB C , Línea Celular Tumoral
2.
J Virol ; 97(2): e0171222, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36651745

RESUMEN

The pathogenic mechanisms of peste des petits ruminants virus (PPRV) infection remain poorly understood, leaving peste des petits ruminants (PPR) control and eradication especially difficult. Here, we determined that PPRV nucleocapsid (N) protein triggers formation of stress granules (SGs) to benefit viral replication. A mass spectrometry-based profiling of the interactome of PPRV N protein revealed that PPRV N protein interacted with protein kinase R (PKR)-activating protein (PACT), and this interaction was confirmed in the context of PPRV infection. PACT was essential for PPRV replication. Besides, the ectopic expression of N activated the PKR/eIF2α (α subunit of eukaryotic initiation factor 2) pathway through induction of PKR phosphorylation, but it did not induce PKR phosphorylation in PACT-deficient (PACT-/-) cells. PPRV N interacted with PACT, impairing the interaction between PACT and a PKR inhibitor, transactivation response RNA-binding protein (TRBP), which subsequently enhanced the interaction between PACT and PKR and thus promoted the activation of PKR and eIF2α phosphorylation, resulting in formation of stress granules (SGs). Consistently, PPRV infection induced SG formation through activation of the PKR/eIF2α pathway, and knockdown of N impaired PPRV-induced SG formation. PPRV-induced SG formation significantly decreased in PACT-/- cells as well. The role of SG formation in PPRV replication was subsequently investigated, which showed that SG formation plays a positive role in PPRV replication. By using an RNA fluorescence in situ hybridization assay, we found that PPRV-induced SGs hid cellular mRNA rather than viral mRNA. Altogether, our data provide the first evidence that PPRV N protein plays a role in modulating the PKR/eIF2α/SG axis and promotes virus replication through targeting PACT. IMPORTANCE Stress granule (SG) formation is a conserved cellular strategy to reduce stress-related damage regulating cell survival. A mass spectrometry-based profiling of the interactome of PPRV N protein revealed that PPRV N interacted with PACT to regulate the assembly of SGs. N protein inhibited the interaction between PACT and a PKR inhibitor, TRBP, through binding to the M1 domain of PACT, which enhanced the interaction between PACT and PKR and thus promoted PKR activation and subsequent eIF2α phosphorylation as well as SG formation. The regulatory function of N protein was strikingly abrogated in PACT-/- cells. SGs induced by PPRV infection through the PKR/eIF2α pathway are PACT dependent. The loss-of-function assay indicated that PPRV-induced SGs were critical for PPRV replication. We concluded that the PPRV N protein manipulates the host PKR/eIF2α/SG axis to favor virus replication.


Asunto(s)
Proteínas de la Nucleocápside , Peste de los Pequeños Rumiantes , Virus de la Peste de los Pequeños Rumiantes , Proteínas de Unión al ARN , Gránulos de Estrés , Replicación Viral , Animales , Humanos , Hibridación Fluorescente in Situ , Proteínas de la Nucleocápside/metabolismo , Peste de los Pequeños Rumiantes/fisiopatología , Virus de la Peste de los Pequeños Rumiantes/fisiología , Proteínas Quinasas/metabolismo , Proteínas de Unión al ARN/metabolismo , Gránulos de Estrés/metabolismo , Replicación Viral/genética
3.
Opt Express ; 32(10): 18293-18300, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38858989

RESUMEN

Accurate measurement of the dielectric functions of emerging optical materials is of great importance for advancements in solid-state physics. However, it is rather challenging since most materials are highly active in ambient conditions, which makes in-situ measurements tough. Here, we report an analytical ellipsometry method (AEM) accessible in ambient conditions for measuring the dielectric functions of chemically reactive materials under bulk encapsulation. Taking the highly pursued low-loss plasmonic materials, such as sodium films, as an example, the effectiveness and measuring errors of the proposed AEM have been systematically demonstrated. This verifies AEM's superiority in overcoming the limitations of traditional spectroscopic ellipsometry methodologies, which include complex multi-parameter fitting procedures and the issue of potentially unphysical results, especially in newly developed low-loss materials. Our results will provide a generalized and convenient ellipsometric measurement strategy for sensitive materials under bulk encapsulation.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38466061

RESUMEN

Background: In recent years, Tiaoshen acupuncture in Traditional Chinese Medicine (TCM) has been employed for treating patients with insomnia, but the clinical efficacy remains to be substantiated. Objective: To assess the efficacy and safety of acupuncture in treating insomnia using the Tiaoshen method in TCM. Design: A systematic review and meta-analysis was conducted. Setting: The research was conducted in Shenzhen. Methods: Electronic databases, including Chinese National Knowledge Infrastructure (CNKI), Wanfang, SinoMed, Weipu, PubMed, Web of Science, EMBASE, and Cochrane databases, were retrieved up to September 15, 2023. Randomized controlled trials (RCTs) meeting inclusion criteria were screened. Quality assessment of included articles was performed using the Cochrane Risk of Bias tool. Valid data were then extracted and analyzed via meta-analysis using Review Manager 5.3. The study was registered in the International Platform of Registered Systematic Review and Meta-analysis Protocols (INPLASY), 2023100051. Results: A total of 13 articles were included, comprising 849 patients with insomnia (diagnosed as chronic insomnia or primary insomnia). Meta-analysis results indicated that acupuncture with the Tiaoshen method could decrease the Pittsburgh Sleep Quality Index (PSQI) score [RR=-3.03, 95% CI (-3.73, -2.33), P < .00001], hyperarousal (HAS) scale score [RR=-7.75, 95% CI (-12.29, -3.22), P < .0008], and fatigue scale-14 (FS-14) score [RR=-2.11, 95% CI (-2.83, -1.38), P < .00001] compared with superficial acupuncture on non-effective acupoints or conventional acupuncture manipulation. Additionally, acupuncture with the Tiaoshen method demonstrated safety. However, the funnel plot suggested the presence of publication bias. Conclusions: Acupuncture with the Tiaoshen method could enhance sleep quality and efficiency. Due to the low quality of some literature, further high-quality RCTs are needed to improve the level of evidence.

5.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474274

RESUMEN

Real-time quantitative PCR (qRT-PCR) is a pivotal technique for gene expression analysis. To ensure reliable and accurate results, the internal reference genes must exhibit stable expression across varied experimental conditions. Currently, no internal reference genes for Camellia impressinervis have been established. This study aimed to identify stable internal reference genes from eight candidates derived from different developmental stages of C. impressinervis flowers. We employed geNorm, NormFinder, and BestKeeper to evaluate the expression stability of these candidates, which was followed by a comprehensive stability analysis. The results indicated that CiTUB, a tubulin gene, exhibited the most stable expression among the eight reference gene candidates in the petals. Subsequently, CiTUB was utilized as an internal reference for the qRT-PCR analysis of six genes implicated in the petal pigment synthesis pathway of C. impressinervis. The qRT-PCR results were corroborated by transcriptome sequencing data, affirming the stability and suitability of CiTUB as a reference gene. This study marks the first identification of stable internal reference genes within the entire genome of C. impressinervis, establishing a foundation for future gene expression and functional studies. Identifying such stable reference genes is crucial for advancing molecular research on C. impressinervis.


Asunto(s)
Camellia , Camellia/genética , Perfilación de la Expresión Génica/métodos , Transcriptoma , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Flores/genética , Estándares de Referencia
6.
BMC Plant Biol ; 23(1): 81, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36750954

RESUMEN

BACKGROUND: The cytoplasmic male sterility (CMS) of rice is caused by chimeric mitochondrial DNA (mtDNA) that is maternally inherited in the majority of multicellular organisms. Wild rice (Oryza rufipogon Griff.) has been regarded as the ancestral progenitor of Asian cultivated rice (Oryza sativa L.). To investigate the distribution of original CMS source, and explore the origin of gametophytic CMS gene, a total of 427 individuals with seventeen representative populations of O. rufipogon were collected in from Dongxiang of Jiangxi Province to Sanya of Hainan Province, China, for the PCR amplification of atp6, orfH79 and B-atp6-orfH79, respectively. RESULTS: The B-atp6-orfH79 and its variants (B-atp6-GSV) were detected in five among seventeen populations (i.e. HK, GZ, PS, TL and YJ) through PCR amplification, which could be divided into three haplotypes, i.e., BH1, BH2, and BH3. The BH2 haplotype was identical to B-atp6-orfH79, while the BH1 and BH3 were the novel haplotypes of B-atp6-GSV. Combined with the high-homology sequences in GenBank, a total of eighteen haplotypes have been revealed, only with ten haplotypes in orfH79 and its variants (GSV) that belong to three species (i.e. O. rufipogon, Oryza nivara and Oryza sativa). Enough haplotypes clearly demonstrated the uniform structural characteristics of the B-atp6-orfH79 as follows: except for the conserved sequence (671 bp) composed of B-atp6 (619 bp) and the downstream followed the B-atp6 (52 bp, DS), and GSV sequence, a rich variable sequence (VS, 176 bp) lies between the DS and GSV with five insertion or deletion and more than 30 single nucleotide polymorphism. Maximum likelihood analysis showed that eighteen haplotypes formed three clades with high support rate. The hierarchical analysis of molecular variance (AMOVA) indicated the occurrence of variation among all populations (FST = 1; P < 0.001), which implied that the chimeric structure occurred independently. Three haplotypes (i.e., H1, H2 and H3) were detected by the primer of orfH79, which were identical to the GVS in B-atp6-GVS structure, respectively. All seventeen haplotypes of the orfH79, belonged to six species based on our results and the existing references. Seven existed single nucleotide polymorphism in GSV section can be translated into eleven various amino acid sequences. CONCLUSIONS: Generally, this study, indicating that orfH79 was always accompanied by the B-atp6, not only provide two original CMS sources for rice breeding, but also confirm the uniform structure of B-atp-orfH79, which contribute to revealing the origin of rice gametophytic CMS genes, and the reason about frequent recombination of mitochondrial DNA.


Asunto(s)
Oryza , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Mitocondrias/metabolismo , Oryza/genética , Fitomejoramiento
7.
J Transl Med ; 21(1): 496, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488572

RESUMEN

BACKGROUND: Substantial studies have demonstrated that oxidative stress placenta and endothelial injury are considered to inextricably critical events in the pathogenesis of preeclampsia (PE). Systemic inflammatory response and endothelial dysfunction are induced by the circulating factors released from oxidative stress placentae. As a novel biomarker of oxidative stress, advanced oxidation protein products (AOPPs) levels are strongly correlated with PE characteristics. Nevertheless, the molecular mechanism underlying the effect of factors is still largely unknown. METHODS: With the exponential knowledge on the importance of placenta-derived extracellular vesicles (pEVs), we carried out lncRNA transcriptome profiling on small EVs (sEVs) secreted from AOPPs-treated trophoblast cells and identified upregulated lncRNA TDRKH-AS1 as a potentially causative factor for PE. We isolated and characterized sEVs from plasma and trophoblast cells by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and western blotting. The expression and correlation of lncRNA TDRKH-AS1 were evaluated using qRT-PCR in plasmatic sEVs and placentae from patients. Pregnant mice injected with TDRKH-AS1-riched trophoblast sEVs was performed to detect the TDRKH-AS1 function in vivo. To investigate the potential effect of sEVs-derived TDRKH-AS1 on endothelial function in vitro, transcriptome sequencing, scanning electron Microscopy (SEM), immunofluorescence, ELISA and western blotting were conducted in HUVECs. RNA pulldown, mass spectrometry, RNA immunoprecipitation (RIP), chromatin isolation by RNA purification (ChIRP) and coimmunoprecipitation (Co-IP) were used to reveal the latent mechanism of TDRKH-AS1 on endothelial injury. RESULTS: The expression level of TDRKH-AS1 was significantly increased in plasmatic sEVs and placentae from patients, and elevated TDRKH-AS1 in plasmatic sEVs was positively correlated with clinical severity of the patients. Moreover, pregnant mice injected with TDRKH-AS1-riched trophoblast sEVs exhibited a hallmark feature of PE with increased blood pressure and systemic inflammatory responses. Pyroptosis, an inflammatory form of programmed cell death, is involved in the development of PE. Indeed, our in vitro study indicated that sEVs-derived TDRKH-AS1 secreted from AOPPs-induced trophoblast elevated DDIT4 expression levels to trigger inflammatory response of pyroptosis in endothelial cells through interacting with PDIA4. CONCLUSIONS: Herein, results in the present study supported that TDRKH-AS1 in sEVs isolated from oxidative stress trophoblast may be implicated in the pathogenesis of PE via inducing pyroptosis and aggravating endothelial dysfunction.


Asunto(s)
Vesículas Extracelulares , Preeclampsia , ARN Largo no Codificante , Femenino , Embarazo , Humanos , Animales , Ratones , Células Endoteliales , Piroptosis , Productos Avanzados de Oxidación de Proteínas , Trofoblastos , Proteínas de Unión al ARN , Factores de Transcripción , Proteína Disulfuro Isomerasas
8.
Plant Physiol ; 189(1): 301-314, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35171294

RESUMEN

Trichomes, the hair-like structures located on aerial parts of most vascular plants, are associated with a wide array of biological processes and affect the economic value of certain species. The processes involved in unicellular trichome formation have been well-studied in Arabidopsis (Arabidopsis thaliana). However, our understanding of the morphological changes and the underlying molecular processes involved in multicellular trichome development is limited. Here, we studied the dynamic developmental processes involved in glandular and nonglandular multicellular trichome formation in cucumber (Cucumis sativus L.) and divided these processes into five sequential stages. To gain insights into the underlying mechanisms of multicellular trichome formation, we performed a time-course transcriptome analysis using RNA-sequencing analysis. A total of 711 multicellular trichome-related genes were screened and a model for multicellular trichome formation was developed. The transcriptome and co-expression datasets were validated by reverse transcription-quantitative PCR and in situ hybridization. In addition, virus-induced gene silencing analysis revealed that CsHOMEOBOX3 (CsHOX3) and CsbHLH1 are involved in nonglandular trichome elongation and glandular trichome formation, respectively, which corresponds with the transcriptome data. This study presents a transcriptome atlas that provides insights into the molecular processes involved in multicellular trichome formation in cucumber and can be an important resource for future functional studies.


Asunto(s)
Arabidopsis , Cucumis sativus , Arabidopsis/genética , Cucumis sativus/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Transcriptoma/genética , Tricomas/genética
9.
Arch Biochem Biophys ; 747: 109756, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37714253

RESUMEN

In this article, we examine the role of erythropoietin-producing hepatocellular receptor A2 (EphA2) in the apoptosis of lens epithelial cells (LECs) in H2O2 and UV radiation-induced cataracts. We treated SRA01/04 cells with H2O2 or ultraviolet (UV) radiation to create a cataract cell model. We constructed a cataract lens model by exposing mice to UV radiation. We used CCK8 assays, Annexin V-FITC analysis, and immunohistochemical staining to explore proliferation and apoptosis of the cataract model. Thereafter, we used quantitative real-time PCR (qPCR) analysis, Western blot assays, and immunofluorescence to determine gene and protein expression levels. We also employed Crispr/Cas9 gene editing to create an EphA2 knockout in SRA01/04 cells. Results: H2O2 or UV radiation induced SRA01/04 cells showed EphA2 gene upregulation. CCK8 and apoptosis assays showed that EphA2 over-expression (OE) reduced epithelial cell apoptosis, but knockout of EphA2 induced it in response to H2O2 and UV radiation, respectively. Mutation of the EphA2 protein kinase domain (c.2003G > A, p. G668D) had a limited effect on cell apoptosis. In vivo, the EphA2 protein level increased in the lenses of UV-treated mice. Our results showed that EphA2 was upregulated in SRA01/04 cells in response to H2O2 and UV radiation. Mutation of the EphA2 protein kinase domain (c.2003G > A, p. G668D) had a limited effect on H2O2 and UV radiation-induced cell apoptosis. We confirmed this change with an experiment on UV-treated mice. The present study established a novel association between EphA2 and LEC apoptosis.

10.
Part Fibre Toxicol ; 20(1): 36, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37759270

RESUMEN

BACKGROUND: Limbal stem/progenitor cells (LSPCs) play a crucial role in maintaining corneal health by regulating epithelial homeostasis. Although PM2.5 is associated with the occurrence of several corneal diseases, its effects on LSPCs are not clearly understood. METHODS: In this study, we explored the correlation between PM2.5 exposure and human limbal epithelial thickness measured by Fourier-domain Optical Coherence Tomography in the ophthalmologic clinic. Long- and short-term PM2.5 exposed-rat models were established to investigate the changes in LSPCs and the associated mechanisms. RESULTS: We found that people living in regions with higher PM2.5 concentrations had thinner limbal epithelium, indicating the loss of LSPCs. In rat models, long-term PM2.5 exposure impairs LSPCs renewal and differentiation, manifesting as corneal epithelial defects and thinner epithelium in the cornea and limbus. However, LSPCs were activated in short-term PM2.5-exposed rat models. RNA sequencing implied that the circadian rhythm in LSPCs was perturbed during PM2.5 exposure. The mRNA level of circadian genes including Per1, Per2, Per3, and Rev-erbα was upregulated in both short- and long-term models, suggesting circadian rhythm was involved in the activation and dysregulation of LSPCs at different stages. PM2.5 also disturbed the limbal microenvironment as evidenced by changes in corneal subbasal nerve fiber density, vascular density and permeability, and immune cell infiltration, which further resulted in the circadian mismatches and dysfunction of LSPCs. CONCLUSION: This study systematically demonstrates that PM2.5 impairs LSPCs and their microenvironment. Moreover, we show that circadian misalignment of LSPCs may be a new mechanism by which PM2.5 induces corneal diseases. Therapeutic options that target circadian rhythm may be viable options for improving LSPC functions and alleviating various PM2.5-associated corneal diseases.


Asunto(s)
Enfermedades de la Córnea , Células Madre , Humanos , Ratas , Animales , Córnea , Homeostasis , Material Particulado/toxicidad , Células Epiteliales
11.
Part Fibre Toxicol ; 20(1): 50, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110941

RESUMEN

BACKGROUND: The association between air pollution and retinal diseases such as age-related macular degeneration (AMD) has been demonstrated, but the pathogenic correlation is unknown. Damage to the outer blood-retinal barrier (oBRB), which consists of the retinal pigment epithelium (RPE) and choriocapillaris, is crucial in the development of fundus diseases. OBJECTIVES: To describe the effects of airborne fine particulate matter (PM2.5) on the oBRB and disease susceptibilities. METHODS: A PM2.5-exposed mice model was established through the administration of eye drops containing PM2.5. Optical coherence tomography angiography, transmission electron microscope, RPE immunofluorescence staining and Western blotting were applied to study the oBRB changes. A co-culture model of ARPE-19 cells with stretching vascular endothelial cells was established to identify the role of choroidal vasodilatation in PM2.5-associated RPE damage. RESULTS: Acute exposure to PM2.5 resulted in choroidal vasodilatation, RPE tight junctions impairment, and ultimately an increased risk of retinal edema in mice. These manifestations are very similar to the pachychoroid disease represented by central serous chorioretinopathy (CSC). After continuous PM2.5 exposure, the damage to the RPE was gradually repaired, but AMD-related early retinal degenerative changes appeared under continuous choroidal inflammation. CONCLUSION: This study reveals oBRB pathological changes under different exposure durations, providing a valuable reference for the prevention of PM2.5-related fundus diseases and public health policy formulation.


Asunto(s)
Barrera Hematorretinal , Células Endoteliales , Animales , Ratones , Angiografía con Fluoresceína/métodos , Susceptibilidad a Enfermedades/patología , Epitelio Pigmentado de la Retina/patología
12.
Mol Cell Proteomics ; 20: 100147, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34530158

RESUMEN

Seneca Valley virus (SVV) or commonly known as senecavirus A, is one of the picornavirus that is associated with vesicular disease and neonatal mortality in swine herds. Our previous study found that SVV replicates extremely faster in porcine Instituto Biologico-Rim Suino-2 (IBRS-2) cells than that in porcine kidney-15 (PK-15) cells. However, the underlying mechanism remains unknown. In this study, we comprehensively compared the expression features between IBRS-2 cells and PK-15 cells in response to SVV infection by an unbiased high-throughput quantitative proteomic analysis. We found that the innate immune response-related pathways were efficiently activated in PK-15 cells but not in IBRS-2 cells during SVV infection. A large amount of interferon (IFN)-stimulated genes were induced in PK-15 cells. In contrast, no IFN-stimulated genes were induced in IBRS-2 cells. Besides, we determined similar results in the two cell lines infected by another porcine picornavirus foot-and-mouth disease virus. Further study demonstrated that the Janus kinase signal transducer and activator of transcription signaling pathway was functioning properly in both IBRS-2 and PK-15 cells. A systematic screening study revealed that the aberrant signal transduction from TANK-binding kinase 1 to IFN regulatory factor 3 in the retinoic acid-inducible gene I-like receptor signaling pathway in IBRS-2 cells was the fundamental cause of the different innate immune response manifestation and different viral replication rate in the two cell lines. Together, our findings determined the different features of IBRS-2 and PK-15 cell lines, which will help for clarification of the pathogenesis of SVV. Besides, identification of the underlying mechanisms will provide new targets and an insight for decreasing the viral clearance rate and probably improve the oncolytic effect by SVV in cancer cells.


Asunto(s)
Proteína 58 DEAD Box/metabolismo , Picornaviridae/fisiología , Receptores Inmunológicos/metabolismo , Animales , Línea Celular , Infecciones por Picornaviridae/metabolismo , Infecciones por Picornaviridae/virología , Transducción de Señal , Porcinos , Replicación Viral
13.
Int J Mol Sci ; 24(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37298515

RESUMEN

In this study, the mitochondrial genomes of two calla species, Zantedeschia aethiopica Spreng. and Zantedeschia odorata Perry., were assembled and compared for the first time. The Z. aethiopica mt genome was assembled into a single circular chromosome, measuring 675,575 bp in length with a 45.85% GC content. In contrast, the Z. odorata mt genome consisted of bicyclic chromosomes (chromosomes 1 and 2), measuring 719,764 bp and exhibiting a 45.79% GC content. Both mitogenomes harbored similar gene compositions, with 56 and 58 genes identified in Z. aethiopica and Z. odorata, respectively. Analyses of codon usage, sequence repeats, gene migration from chloroplast to mitochondrial, and RNA editing were conducted for both Z. aethiopica and Z. odorata mt genomes. Phylogenetic examination based on the mt genomes of these two species and 30 other taxa provided insights into their evolutionary relationships. Additionally, the core genes in the gynoecium, stamens, and mature pollen grains of the Z. aethiopica mt genome were investigated, which revealed maternal mitochondrial inheritance in this species. In summary, this study offers valuable genomic resources for future research on mitogenome evolution and the molecular breeding of calla lily.


Asunto(s)
Araceae , Genoma Mitocondrial , Lilium , Zantedeschia , Zantedeschia/genética , Araceae/genética , Genoma Mitocondrial/genética , Lilium/genética , Filogenia
14.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36675091

RESUMEN

Age-related macular degeneration (AMD) is the leading cause of irreversible visual loss in the elderly population. With aging and the accumulated effects of environmental stress, retinal pigment epithelial (RPE) cells are particularly susceptible to oxidative damage, which can lead to retinal degeneration. However, the underlying molecular mechanisms of how RPE responds and progresses under oxidative damage are still largely unknown. Here, we reveal that exogenous oxidative stress led to ferroptosis characterized by Fe2+ accumulation and lipid peroxidation in RPE cells. Glutathione specific gamma-glutamylcyclotransferase 1 (Chac1), as a component of the unfolded protein response (UPR) pathway, plays a pivotal role in oxidative-stress-induced cell ferroptosis via the regulation of glutathione depletion. These results indicate the biological significance of Chac1 as a novel contributor of oxidative-stress-induced ferroptosis in RPE, suggesting its potential role in AMD.


Asunto(s)
Ferroptosis , Degeneración Macular , Estrés Oxidativo , Epitelio Pigmentado de la Retina , Anciano , Humanos , Células Epiteliales/metabolismo , Ferroptosis/genética , Ferroptosis/fisiología , Glutatión/metabolismo , Degeneración Macular/metabolismo , Estrés Oxidativo/genética , Estrés Oxidativo/fisiología , Epitelio Pigmentado de la Retina/metabolismo , Pigmentos Retinianos/metabolismo
15.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37108264

RESUMEN

The AP2/ERF transcription factor family is one of the most important gene families in plants and plays a vital role in plant abiotic stress responses. Although Erianthus fulvus is very important in the genetic improvement of sugarcane, there are few studies concerning AP2/ERF genes in E. fulvus. Here, we identified 145 AP2/ERF genes in the E. fulvus genome. Phylogenetic analysis classified them into five subfamilies. Evolutionary analysis showed that tandem and segmental duplication contributed to the expansion of the EfAP2/ERF family. Protein interaction analysis showed that twenty-eight EfAP2/ERF proteins and five other proteins had potential interaction relationships. Multiple cis-acting elements present in the EfAP2/ERF promoter were related to abiotic stress response, suggesting that EfAP2/ERF may contribute to adaptation to environmental changes. Transcriptomic and RT-qPCR analyses revealed that EfDREB10, EfDREB11, EfDREB39, EfDREB42, EfDREB44, EfERF43, and EfAP2-13 responded to cold stress, EfDREB5 and EfDREB42 responded to drought stress, and EfDREB5, EfDREB11, EfDREB39, EfERF43, and EfAP2-13 responded to ABA treatment. These results will be helpful for better understanding the molecular features and biological role of the E. fulvus AP2/ERF genes and lay a foundation for further research on the function of EfAP2/ERF genes and the regulatory mechanism of the abiotic stress response.


Asunto(s)
Saccharum , Filogenia , Saccharum/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes
16.
Angew Chem Int Ed Engl ; 62(41): e202308413, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37380606

RESUMEN

Tumor-associated macrophages (TAMs) play a critical role in the immunosuppressive solid tumor microenvironment (TME), yet in situ engineering of TAMs for enhanced tumor immunotherapy remains a significant challenge in translational immuno-oncology. Here, we report an innovative nanodrug-delivering-drug (STNSP@ELE) strategy that leverages two-dimensional (2D) stanene-based nanosheets (STNSP) and ß-Elemene (ELE), a small-molecule anticancer drug, to overcome TAM-mediated immunosuppression and improve chemo-immunotherapy. Our results demonstrate that both STNSP and ELE are capable of polarizing the tumor-supportive M2-like TAMs into a tumor-suppressive M1-like phenotype, which acts with the ELE chemotherapeutic to boost antitumor responses. In vivo mouse studies demonstrate that STNSP@ELE treatment can reprogram the immunosuppressive TME by significantly increasing the intratumoral ratio of M1/M2-like TAMs, enhancing the population of CD4+ and CD8+ T lymphocytes and mature dendritic cells, and elevating the expression of immunostimulatory cytokines in B16F10 melanomas, thereby promoting a robust antitumor response. Our study not only demonstrates that the STNSP@ELE chemo-immunotherapeutic nanoplatform has immune-modulatory capabilities that can overcome TAM-mediated immunosuppression in solid tumors, but also highlights the promise of this nanodrug-delivering-drug strategy in developing other nano-immunotherapeutics and treating various types of immunosuppressive tumors.


Asunto(s)
Melanoma , Nanopartículas , Neoplasias , Ratones , Animales , Macrófagos Asociados a Tumores , Macrófagos/metabolismo , Inmunoterapia/métodos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Melanoma/patología , Nanopartículas/uso terapéutico , Microambiente Tumoral
17.
Plant J ; 106(3): 753-765, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33577109

RESUMEN

The fruit trichomes of Cucurbitaceae are widely desired in many Asian countries and have been a key determinant of cucumber (Cucumis sativus L.) cultivar selection for commercial production and breeding. However, our understanding of the initiation and development of cucumber trichomes is still limited. Here, we found that the cucumber TINY BRANCHED HAIR (TBH) gene is preferentially expressed in multicellular trichomes. Overexpression of CsTBH in tbh mutants restored the trichome phenotype and increased the percentage of female flowers, whereas silencing of CsTBH in wild-type plants resulted in stunted trichomes with a lower rate of female flowers. Furthermore, we provide evidence that CsTBH can directly bind to the promoters of cucumber 1-Aminocyclopropane-1-Carboxylate Synthase (CsACS) genes and regulate their expression, which affects multicellular trichome development, ethylene accumulation, and sex expression. Two cucumber acs mutants with different trichome morphology and sex morphs compared with their near-isogenic line further support our findings. Collectively, our study provides new information on the molecular mechanism of CsTBH in regulating multicellular trichome development and sex expression through an ethylene pathway.


Asunto(s)
Cucumis sativus/metabolismo , Etilenos/metabolismo , Genes de Plantas/genética , Redes y Vías Metabólicas , Factores de Transcripción/genética , Tricomas/crecimiento & desarrollo , Cucumis sativus/crecimiento & desarrollo , Genes de Plantas/fisiología , Regiones Promotoras Genéticas , Factores de Transcripción/fisiología , Tricomas/metabolismo
18.
Opt Express ; 30(7): 11514-11523, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35473094

RESUMEN

The SU (1,1)-type atom-light hybrid interferometer (SALHI) is a kind of interferometer that is sensitive to both the optical phase and atomic phase. However, the loss has been an unavoidable problem in practical applications and greatly limits the use of interferometers. Visibility is an important parameter to evaluate the performance of interferometers. Here, we experimentally demonstrate the mitigating effect of the loss on visibility of the SALHI via asymmetric gain optimization, where the maximum threshold of loss to visibility close to 100% is increased. Furthermore, we theoretically find that the optimal condition for the largest visibility is the same as that for the enhancement of signal-to-noise ratio (SNR) to the best value with the existence of the losses using the intensity detection, indicating that visibility can act as an experimental operational criterion for SNR improvement in practical applications. Improvement of the interference visibility means achievement of SNR enhancement. Our results provide a significant foundation for practical application of the SALHI in radar and ranging measurements.

19.
Graefes Arch Clin Exp Ophthalmol ; 260(2): 677-687, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34357418

RESUMEN

PURPOSE: To study the association of myopia progression with the morphological changes of optic disc and ß-peripapillary atrophy (ß-PPA) in 8-11 years old primary school students. METHODS: This study was a prospective, school-based investigation. This study included 610 children (1008 eyes) who were continuously observed and had data available from 2016 to 2017 in the Sanhe Cohort Study of the Risk Factors for Myopia (SCSRFM). The children underwent a comprehensive eye examination including measurement of visual acuity, autorefractometry, and posterior segment of the eye. ß-PPA regions and optic disc ovality index were identified and measured on the fundus photographs. RESULTS: The prevalence of myopia was 72.62% (732/1008) in 2016. In myopic children, the prevalence of the vertical ß-PPA, the horizontal ß-PPA, and the oval optic disc were 75.68% (554/732), 75.96% (556/732) and, 11.61% (85/732) respectively. From 2016 to 2017, with the progression of vertical ß-PPA, horizontal ß-PPA, area of ß-PPA, and optic disc ovality index, the myopic diopter and the axial length (AL) were increased. The progression of horizontal ß-PPA was significantly correlated with the progression of myopic diopter and AL (all p < 0.05). The analysis on the distribution of progression rate of parameters in different groups found that the progression rate of horizontal ß-PPA, area of ß-PPA, and optic disc ovality index increased with the increase of the progression of diopter and AL. The progression of horizontal ß-PPA, area of ß-PPA, optic disc ovality index, and diopter in girls were greater than that in boys, and the progression of optic disc ovality index and diopter had a statistical significance (all p < 0.05). CONCLUSIONS: The 1-year follow-up study of the third-grade primary school students showed that with the progression of myopia and the growth of AL, ß-PPA and optic disc ovality index also changed. There was a positive correlation between the change of ß-PPA and optic disc ovality index and the progression of myopia diopter and AL.


Asunto(s)
Miopía , Atrofia Óptica , Disco Óptico , Atrofia , Niño , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Humanos , Masculino , Miopía/diagnóstico , Miopía/epidemiología , Miopía/patología , Atrofia Óptica/diagnóstico , Atrofia Óptica/epidemiología , Disco Óptico/patología , Estudios Prospectivos , Instituciones Académicas , Estudiantes , Tomografía de Coherencia Óptica
20.
J Clin Lab Anal ; 36(3): e24269, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35119133

RESUMEN

INTRODUCTION: Coagulation tests are affected by many factors, such as age, race, and gestation. Although coagulation test results vary by ABO blood type, reference intervals of different ABO blood groups remain to be determined. This study aims to investigate the reference ranges of coagulation tests for different ABO blood groups in the Han population in South China. METHODS: A retrospective study was conducted in the First Affiliated Hospital of Shantou University Medical College. In all, 9600 individuals aged between 20 and 79 years were included. Coagulation tests, including prothrombin time (PT), international normalized ratio (INR), activated partial thromboplastin time (aPTT), thrombin time, and fibrinogen, were performed. RESULTS: There was a significant difference in PT, INR, and aPTT among ABO blood groups. PT and INR varied slightly between ABO blood groups. There was a higher aPTT value in individuals in the O blood group than in those in non-O blood groups, in both males and females across the included age range. No differences were found in thrombin time and fibrinogen between the ABO blood groups. CONCLUSION: The study provides reference data on coagulation tests from ABO blood groups in South China. The established reference intervals specific to ABO blood type, sex, and age may improve clinical decisions based on coagulation tests.


Asunto(s)
Valores de Referencia , Adulto , Anciano , Pruebas de Coagulación Sanguínea/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tiempo de Tromboplastina Parcial , Tiempo de Protrombina , Estudios Retrospectivos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA