Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
IEEE J Biomed Health Inform ; 18(1): 193-204, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24403417

RESUMEN

The Selvester score is an effective means for estimating the extent of myocardial scar in a patient from low-cost ECG recordings. Automation of such a system is deemed to help implementing low-cost high-volume screening mechanisms of scar in the primary care. This paper describes, for the first time to the best of our knowledge, an automated implementation of the updated Selvester scoring system for that purpose, where fractionated QRS morphologies and patterns are identified and classified using a novel stationary wavelet transform (SWT)-based fractionation detection algorithm. This stage informs the two principal steps of the updated Selvester scoring scheme--the confounder classification and the point awarding rules. The complete system is validated on 51 ECG records of patients detected with ischemic heart disease. Validation has been carried out using manually detected confounder classes and computation of the actual score by expert cardiologists as the ground truth. Our results show that as a stand-alone system it is able to classify different confounders with 94.1% accuracy whereas it exhibits 94% accuracy in computing the actual score. When coupled with our previously proposed automated ECG delineation algorithm, that provides the input ECG parameters, the overall system shows 90% accuracy in confounder classification and 92% accuracy in computing the actual score and thereby showing comparable performance to the stand-alone system proposed here, with the added advantage of complete automated analysis without any human intervention.


Asunto(s)
Algoritmos , Electrocardiografía/métodos , Análisis de Ondículas , Bases de Datos Factuales , Electrocardiografía/clasificación , Corazón/fisiopatología , Humanos , Reproducibilidad de los Resultados , Índice de Severidad de la Enfermedad
2.
IEEE J Biomed Health Inform ; 17(2): 459-69, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23362250

RESUMEN

This paper introduces a low-complexity algorithm for the extraction of the fiducial points from the Electrocardiogram (ECG). The application area we consider is that of remote cardiovascular monitoring, where continuous sensing and processing takes place in low-power, computationally constrained devices, thus the power consumption and complexity of the processing algorithms should remain at a minimum level. Under this context, we choose to employ the Discrete Wavelet Transform (DWT) with the Haar function being the mother wavelet, as our principal analysis method. From the modulus-maxima analysis on the DWT coefficients, an approximation of the ECG fiducial points is extracted. These initial findings are complimented with a refinement stage, based on the time-domain morphological properties of the ECG, which alleviates the decreased temporal resolution of the DWT. The resulting algorithm is a hybrid scheme of time and frequency domain signal processing. Feature extraction results from 27 ECG signals from QTDB, were tested against manual annotations and used to compare our approach against the state-of-the art ECG delineators. In addition, 450 signals from the 15-lead PTBDB are used to evaluate the obtained performance against the CSE tolerance limits. Our findings indicate that all but one CSE limits are satisfied. This level of performance combined with a complexity analysis, where the upper bound of the proposed algorithm, in terms of arithmetic operations, is calculated as 2:423N + 214 additions and 1:093N + 12 multiplications for N 861 or 2:553N + 102 additions and 1:093N +10 multiplications for N > 861 (N being the number of input samples), reveals that the proposed method achieves an ideal trade-off between computational complexity and performance, a key requirement in remote CVD monitoring systems.


Asunto(s)
Algoritmos , Electrocardiografía/métodos , Análisis de Ondículas , Bases de Datos Factuales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA