Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Transl Med ; 21(1): 418, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37370092

RESUMEN

BACKGROUND: RP11-296E3.2 is a novel long noncoding RNA (lncRNA) associated with colorectal cancer (CRC) metastasis, that was reported in our previous clinical studies. However, the mechanisms of RP11-296E3.2 in colorectal tumorigenesis remain elusive. METHODS: RNA sequencing (RNA-seq), Fluorescence in situ hybridization (FISH), Transwell assays and others, were performed to evaluate the function of RP11-296E3.2 for proliferation and metastasis in vitro. In situ and metastatic tumor models were performed to evaluate the function of RP11-296E3.2 for proliferation and metastasis in vivo. RNA-pulldown, RNA-interacting protein immunoprecipitation (RIP), tissue microarray (TMA) assay, a luciferase reporter assay, chromatin immunoprecipitation (ChIP) and others were performed to explore the mechanisms by which RP11-296E3.2 regulates CRC tumorigenesis. RESULTS: RP11-296E3.2 was confirmed to be associated with CRC cell proliferation and metastasis in vitro and in vivo. Mechanistically, RP11-296E3.2 directly bound to recombinant Y-Box Binding Protein 1 (YBX1) and enhanced signal transducer and activator of transcription 3 (STAT3) transcription and phosphorylation. YBX1 promoted the CRC cell proliferation and migration, while knockdown of RP11-296E3.2 attenuated the effects of YBX1 on CRC cell proliferation, and metastasis and the expression of several related downstream genes. We are the first to discover and confirm the existence of the YBX1/STAT3 pathway, a pathway dependent on RP11-296E3.2. CONCLUSION: Together, these novel findings show that the RP11-296E3.2/YBX1 pathway promotes colorectal tumorigenesis and progression by activating STAT3 transcription and phosphorylation, and suggest that RP11-296E3.2 is a potential diagnostic biomarker and therapeutic target in CRC.


Asunto(s)
Neoplasias Colorrectales , ARN Largo no Codificante , Humanos , Línea Celular Tumoral , Factor de Transcripción STAT3/metabolismo , Hibridación Fluorescente in Situ , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Neoplasias Colorrectales/patología , ARN , Proliferación Celular , Chaperonas Moleculares/metabolismo , Regulación Neoplásica de la Expresión Génica , ARN Largo no Codificante/genética , Movimiento Celular/genética , Proteína 1 de Unión a la Caja Y/genética , Proteína 1 de Unión a la Caja Y/metabolismo
2.
BMC Pulm Med ; 23(1): 478, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38031059

RESUMEN

BACKGROUND: Accurate prediction of acute exacerbation helps select patients with chronic obstructive pulmonary disease (COPD) for individualized therapy. The potential of lymphocyte subsets to function as clinical predictive factors for acute exacerbations of chronic obstructive pulmonary disease (AECOPD) remains uncertain. METHODS: In this single-center prospective cohort study with a 2-year follow-up, 137 patients aged 51 to 79 with AECOPD were enrolled. We examined the prognostic indicators of AECOPD by analyzing lymphocyte subsets and baseline symptom score. Furthermore, a predictive model was constructed to anticipate the occurrence of respiratory failure in patients experiencing AECOPD. RESULTS: The COPD Assessment Test (CAT) score combined with home oxygen therapy and CD4+CD8+ T cells% to predict respiratory failure in AECOPD patients were the best (the area under the curves [AUC] = 0.77, 95% CI: 0.70-0.86, P < 0.0001, sensitivity: 60.4%, specificity: 86.8%). The nomogram model, the C index, calibration plot, decision curve analysis, and clinical impact curve all indicate the model's good predictive performance. The observed decrease in the proportions of CD4+CD8+ T cells appears to be correlated with more unfavorable outcomes. CONCLUSIONS: The nomogram model, developed to forecast respiratory failure in patients with AECOPD, utilizing variables such as home oxygen therapy, CAT score, and CD4+CD8+ T cells%, demonstrated a high level of practicality in clinical settings. CD4+CD8+ T cells serve as a reliable and readily accessible predictor of AECOPD, exhibiting greater stability compared to other indices. It is less susceptible to subjective influences from patients or physicians. This model facilitated personalized estimations, enabling healthcare professionals to make informed decisions regarding preventive interventions.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Insuficiencia Respiratoria , Humanos , Estudios Prospectivos , Linfocitos T CD8-positivos , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Oxígeno/uso terapéutico , Progresión de la Enfermedad
3.
Proc Natl Acad Sci U S A ; 117(9): 4770-4780, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32071245

RESUMEN

Recurrence and metastasis remain the major obstacles to successful treatment of hepatocellular carcinoma (HCC). Chromatin remodeling factor ARID2 is commonly mutated in HCC, indicating its important role in cancer development. However, its role in HCC metastasis is largely elusive. In this study, we find that ARID2 expression is significantly decreased in metastatic HCC tissues, showing negative correlation with pathological grade, organ metastasis and positive association with survival of HCC patients. ARID2 inhibits migration and invasion of HCC cells in vitro and metastasis in vivo. Moreover, ARID2 knockout promotes pulmonary metastasis in different HCC mouse models. Mechanistic study reveals that ARID2 represses epithelial-mesenchymal transition (EMT) of HCC cells by recruiting DNMT1 to Snail promoter, which increases promoter methylation and inhibits Snail transcription. In addition, we discover that ARID2 mutants with disrupted C2H2 domain lose the metastasis suppressor function, exhibiting a positive association with HCC metastasis and poor prognosis. In conclusion, our study reveals the metastasis suppressor role as well as the underlying mechanism of ARID2 in HCC and provides a potential therapeutic target for ARID2-deficient HCC.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Ensamble y Desensamble de Cromatina/fisiología , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Metástasis de la Neoplasia/tratamiento farmacológico , Factores de Transcripción/metabolismo , Animales , Dedos de Zinc CYS2-HIS2 , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Ratones , Ratones Noqueados , Mutación , Metástasis de la Neoplasia/patología , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética
4.
Small ; 18(24): e2201628, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35561074

RESUMEN

Flexible transparent energy supplies are extremely essential to the fast-growing flexible electronic systems. However, the general developed flexible transparent energy storage devices are severely limited by the challenges of low energy density, safety issues, and/or poor compatibility. In this work, a freestanding 3D hierarchical metallic micromesh with remarkble optoelectronic properties (T = 89.59% and Rs = 0.23 Ω sq-1 ) and super-flexibility is designed and manufactured for flexible transparent alkaline zinc batteries. The 3D Ni micromesh supported Cu(OH)2 @NiCo bimetallic hydroxide flexible transparent electrode (3D NM@Cu(OH)2 @NiCo BH) is obtained by a combination of photolithography, chemical etching, and electrodeposition. The negative electrode is constructed by electrodeposition of electrochemically active zinc on the surface of Ni@Cu micromesh (Ni@Cu@Zn MM). The metallic micromesh with 3D hierarchical nanoarchitecture can not only ensure low sheet resistance, but also realize high mass loading of active materials and short electron/ion transmission path, which can guarantee high energy density and high-rate capability of the transparent devices. The flexible transparent 3D NM@Cu(OH)2 @NiCo BH electrode realizes a specific capacity of 66.03 µAh cm-2 at 1 mA cm-2 with a transmittance of 63%. Furthermore, the assembled solid-state NiCo-Zn alkaline battery exhibits a desirable energy density/power density of 35.89 µWh cm-2 /2000.26 µW cm-2 with a transmittance of 54.34%.

5.
Exp Cell Res ; 407(2): 112826, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34508742

RESUMEN

INTS6 (integrator complex subunit 6) has been reported as a tumor suppressor in many cancers. However, the expression and biological function of INTS6 in colorectal cancer (CRC) has not been investigated yet. In this study, we found that INTS6 expression was significantly increased in CRC tissues when compared with normal tissues and was associated with poor prognosis. Downregulation of INTS6 induced G1/S-phase cell cycle arrest, and markedly suppressed the growth of CRC cells and the derived tumors, while overexpression of INTS6 showed opposite effect. Mechanism study revealed that INTS6 increased the levels of phosphorylated AKT (p-AKT) and ERK (p-ERK), and the growth-promoting effect of INTS6 was inhibited by AKT and ERK inhibitors. Besides, INTS6 also affected the expression of two targets of PI3K/AKT and MAPK signaling, c-Myc and CDK2, which contributed to cell cycle alteration. Altogether, the present study has revealed the oncogenic role of INTS6 in CRC, providing a novel therapeutic target for this malignant cancer.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/patología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación Neoplásica de la Expresión Génica , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Movimiento Celular , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/genética , Puntos de Control de la Fase G1 del Ciclo Celular , Humanos , Masculino , Ratones , Ratones Desnudos , Fosfatidilinositol 3-Quinasas/genética , Pronóstico , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas de Unión al ARN/genética , Tasa de Supervivencia , Células Tumorales Cultivadas , Proteínas Supresoras de Tumor/genética , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Molecules ; 27(17)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36080240

RESUMEN

Prussian blue analogue (PBA), with a three-dimensional open skeleton and abundant unsaturated surface coordination atoms, attracts extensive research interest in electrochemical energy-related fields due to facile preparation, low cost, and adjustable components. However, it remains a challenge to directly employ PBA as an electrocatalyst for water splitting owing to their poor charge transport ability and electrochemical stability. Herein, the PBA/rGO heterostructure is constructed based on structural engineering. Graphene not only improves the charge transfer efficiency of the compound material but also provides confined growth sites for PBA. Furthermore, the charge transfer interaction between the heterostructure interfaces facilitates the electrocatalytic oxygen evolution reaction of the composite, which is confirmed by the results of the electrochemical measurements. The overpotential of the PBA/rGO material is only 331.5 mV at a current density of 30 mA cm-2 in 1.0 M KOH electrolyte with a small Tafel slope of 57.9 mV dec-1, and the compound material exhibits high durability lasting for 40 h.

7.
Molecules ; 26(24)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34946572

RESUMEN

A machine learning approach has been applied to virtual screening for lysine specific demethylase 1 (LSD1) inhibitors. LSD1 is an important anti-cancer target. Machine learning models to predict activity were constructed using Morgan molecular fingerprints. The dataset, consisting of 931 molecules with LSD1 inhibition activity, was obtained from the ChEMBL database. An evaluation of several candidate algorithms on the main dataset revealed that the support vector regressor gave the best model, with a coefficient of determination (R2) of 0.703. Virtual screening, using this model, identified five predicted potent inhibitors from the ZINC database comprising more than 300,000 molecules. The virtual screening recovered a known inhibitor, RN1, as well as four compounds where activity against LSD1 had not previously been suggested. Thus, we performed a machine-learning-enabled virtual screening of LSD1 inhibitors using only the structural information of the molecules.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Histona Demetilasas/antagonistas & inhibidores , Lisina/farmacología , Aprendizaje Automático , Bases de Datos Factuales , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Histona Demetilasas/metabolismo , Humanos , Lisina/química , Estructura Molecular
8.
Hepatology ; 68(2): 533-546, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29506314

RESUMEN

Obesity is associated with both endoplasmic reticulum (ER) stress and chronic metabolic inflammation. ER stress activates the unfolded protein response (UPR) and has been implicated in a variety of cancers, including hepatocellular carcinoma (HCC). It is unclear whether individual UPR pathways are mechanistically linked to HCC development, however. Here we report a dual role for inositol-requiring enzyme 1α (IRE1α), the ER-localized UPR signal transducer, in obesity-promoted HCC development. We found that genetic ablation of IRE1α in hepatocytes not only markedly reduced the occurrence of diethylnitrosamine (DEN)-induced HCC in liver-specific IRE1α knockout (LKO) mice when fed a normal chow (NC) diet, but also protected against the acceleration of HCC progression during high-fat diet (HFD) feeding. Irrespective of their adiposity states, LKO mice showed decreased hepatocyte proliferation and signal transducer and activator of transcription 3 (STAT3) activation, even in the face of increased hepatic apoptosis. Furthermore, IRE1α abrogation blunted obesity-associated activation of hepatic inhibitor of nuclear factor kappa B kinase subunit beta (IKKß)-nuclear factor kappa B (NF-κB) pathway, leading to reduced production of the tumor-promoting inflammatory cytokines tumor necrosis factor (TNF) and interleukin 6 (IL-6). Importantly, higher IRE1α expression along with elevated STAT3 phosphorylation was also observed in the tumor tissues from human HCC patients, correlating with their poorer survival rate. CONCLUSION: IRE1α acts in a feed-forward loop during obesity-induced metabolic inflammation to promote HCC development through STAT3-mediated hepatocyte proliferation. (Hepatology 2018).


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Endorribonucleasas/metabolismo , Neoplasias Hepáticas/metabolismo , Obesidad/complicaciones , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Carcinoma Hepatocelular/etiología , Carcinoma Hepatocelular/patología , Proliferación Celular , Citocinas/metabolismo , Dieta Alta en Grasa , Dietilnitrosamina/farmacología , Hepatocitos/metabolismo , Humanos , Inmunohistoquímica , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/metabolismo , Obesidad/veterinaria , Factor de Transcripción STAT3/metabolismo , Transducción de Señal
9.
Biochem Biophys Res Commun ; 482(4): 1048-1053, 2017 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-27908734

RESUMEN

Metabolic dysregulation is one of the most common and recognizable features of cancer. Triosephosphate isomerase 1 (TPI1), which catalyzes the interconversion of dihydroxyacetone phosphate (DHAP) and d-glyceraldehyde-3-phosphate (G3P) during glycosis and gluconeogenesis, is a crucial enzyme in the carbohydrate metabolism. However, the biological function and mechanism of TPI1 in cancer remain largely unknown. In this study, we have found that TPI1 expression was greatly decreased in clinical HCC samples, positively correlated with overall survival, and negatively associated with histological differentiation, tumor size and organ metastasis. Forced expression of TPI1 in HCC cells inhibited cell growth, migration, and invasion in vitro. Consistently, knockdown of TPI1 by shRNA promoted cell growth, migration and invasion. Moreover, overexpression of TPI1 led to slowed tumor growth and decreased tumor weight in vivo. Furthermore, cell cycle arrest was induced by TPI1 overexpression. These phenotypes were associated with altered expression of ß-catenin, Vimentin, P53, P27 and CyclinD1. Therefore, our data suggested that TPI1 functioned as a tumor suppressor in HCC and might serve as a potential therapeutic target for the treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/metabolismo , Triosa-Fosfato Isomerasa/metabolismo , Anciano , Animales , Carcinogénesis , Movimiento Celular , Proliferación Celular , Ciclina D1/metabolismo , Progresión de la Enfermedad , Femenino , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Desnudos , Persona de Mediana Edad , Invasividad Neoplásica , Trasplante de Neoplasias , Antígeno Nuclear de Célula en Proliferación/metabolismo , ARN Interferente Pequeño/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Vimentina/metabolismo , beta Catenina/metabolismo
10.
Hepatology ; 62(6): 1791-803, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26257239

RESUMEN

UNLABELLED: Sorafenib is a specific adenosine triphosphate-competitive RAF inhibitor used as a first-line treatment of advanced hepatocellular carcinoma (HCC). However, the responses are variable, reflecting heterogeneity of the disease, while the resistance mechanism remains poorly understood. Here, we report that sorafenib treatment can exacerbate disease progression in both patient-derived xenografts and cell line-derived xenografts and that the therapeutic effect of the drug inversely covaries to the ratio of epithelial cell adhesion molecule-positive cells, which may be tumor initiating cells in HCC. The TSC2-AKT cascade mediates this sorafenib resistance. In response to sorafenib treatment, formation of the TSC1/2 complex is enhanced, causing increased phosphorylation of AKT, which contributes to up-regulation of "stemness"-related genes in epithelial cell adhesion molecule-positive cells and enhancement of tumorigenicity. The expression of TSC2 negatively correlated with prognosis in clinical sorafenib therapy. Furthermore, all-trans retinoic acid decreased AKT activity, reduced the epithelial cell adhesion molecule-positive cell population enriched by sorafenib, and potentiated the therapeutic effect of sorafenib in the patient-derived xenograft model. CONCLUSION: Our findings suggest that a subtype of HCC is not suitable for sorafenib therapy; this resistance to sorafenib can be predicted by the status of TSC2, and agents inducing differentiation of tumor initiating cells (e.g., all-trans retinoic acid) should improve the prognosis of this subtype of HCC.


Asunto(s)
Antígenos de Neoplasias/efectos de los fármacos , Antineoplásicos/efectos adversos , Carcinoma Hepatocelular/inducido químicamente , Moléculas de Adhesión Celular/efectos de los fármacos , Neoplasias Hepáticas/inducido químicamente , Células Madre Neoplásicas/efectos de los fármacos , Niacinamida/análogos & derivados , Proteína Oncogénica v-akt/fisiología , Compuestos de Fenilurea/efectos adversos , Proteínas Supresoras de Tumor/fisiología , Animales , Carcinoma Hepatocelular/clasificación , Progresión de la Enfermedad , Molécula de Adhesión Celular Epitelial , Humanos , Neoplasias Hepáticas/clasificación , Ratones , Niacinamida/efectos adversos , Sorafenib , Proteína 2 del Complejo de la Esclerosis Tuberosa
11.
J Imaging ; 10(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38921613

RESUMEN

We introduce an emotional stimuli detection task that targets extracting emotional regions that evoke people's emotions (i.e., emotional stimuli) in artworks. This task offers new challenges to the community because of the diversity of artwork styles and the subjectivity of emotions, which can be a suitable testbed for benchmarking the capability of the current neural networks to deal with human emotion. For this task, we construct a dataset called APOLO for quantifying emotional stimuli detection performance in artworks by crowd-sourcing pixel-level annotation of emotional stimuli. APOLO contains 6781 emotional stimuli in 4718 artworks for validation and testing. We also evaluate eight baseline methods, including a dedicated one, to show the difficulties of the task and the limitations of the current techniques through qualitative and quantitative experiments.

12.
Bioengineering (Basel) ; 11(8)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39199705

RESUMEN

Pulmonary fibrosis is a fatal lung disease affecting approximately 5 million people worldwide, with a 5-year survival rate of less than 50%. Currently, the only available treatments are palliative care and lung transplantation, as there is no curative drug for this condition. The disease involves the excessive synthesis of the extracellular matrix (ECM) due to alveolar epithelial cell damage, leading to scarring and stiffening of the lung tissue and ultimately causing respiratory failure. Although multiple factors contribute to the disease, the exact causes remain unclear. The mechanical properties of lung tissue, including elasticity, viscoelasticity, and surface tension, are not only affected by fibrosis but also contribute to its progression. This paper reviews the alteration in these mechanical properties as pulmonary fibrosis progresses and how cells in the lung, including alveolar epithelial cells, fibroblasts, and macrophages, respond to these changes, contributing to disease exacerbation. Furthermore, it highlights the importance of developing advanced in vitro models, based on hydrogels and 3D bioprinting, which can accurately replicate the mechanical and structural properties of fibrotic lungs and are conducive to studying the effects of mechanical stimuli on cellular responses. This review aims to summarize the current understanding of the interaction between the progression of pulmonary fibrosis and the alterations in mechanical properties, which could aid in the development of novel therapeutic strategies for the disease.

13.
Clin Exp Med ; 23(8): 5161-5176, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37328656

RESUMEN

Autoimmunity is present in patients with stable chronic obstructive pulmonary disease (COPD), playing a role in indirect and direct ways. We aimed to explore whether autoimmunity could play a role in COPD exacerbations and construct autoimmunity-related prediction models. This prospective, longitudinal, observational cohort study enrolled 155 patients with acute COPD exacerbations (AECOPD) followed for at least two years. The laboratory parameters, including complete blood count, serum immunoglobulins G/A/M and complement C3/C4 levels, were collected at enrollment. We studied the demographic characteristics, clinical characteristics and laboratory parameters to identify independent risk factors and build predictive models. The results showed that lower lymphocyte count was associated with noninvasive ventilation (NIV) in patients with AECOPD (the odds ratio [OR] 0.25, the 95% confidence interval [CI]: 0.08-0.81, P = 0.02). Lymphocyte count performed well with an area under the curves (AUC) of 0.75 (P < 0.0001, sensitivity: 78.1%, specificity: 62.3%, cutoff value [Cov] ≤ 1.1). The C index, calibration plot, decision curve analysis (DCA) and bootstrap repetitions indicated that this clinical prediction model based on lymphocyte count for NIV in patients with AECOPD performed well. Having prior home oxygen therapy (OR: 2.82, 95% CI: 1.25-6.36, P = 0.013) and higher COPD Assessment Test (CAT) scores (OR: 1.14, 95% CI: 1.03-1.25, P = 0.011) were associated with the increased risk for respiratory failure. For predicting respiratory failure, CAT scores and home oxygen therapy combined had an AUC-ROC of 0.73 (P < 0.0001). This clinical prediction model based on lymphocyte count may help to assist in treatment decisions for NIV in patients with AECOPD. Lower complement C3 seems to be associated with worse outcomes in patients with AECOPD.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Insuficiencia Respiratoria , Humanos , Estudios Prospectivos , Estudios de Seguimiento , Complemento C3 , Modelos Estadísticos , Progresión de la Enfermedad , Pronóstico , Recuento de Células Sanguíneas , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Insuficiencia Respiratoria/complicaciones , Inmunoglobulinas , Oxígeno
14.
Mol Oncol ; 17(4): 695-709, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36453019

RESUMEN

There is no targeted therapy for KRAS proto-oncogene, GTPase (KRAS)-mutant metastatic colorectal cancer (mCRC) because the underlying mechanism remains obscure. Based on bioinformatic analysis, this study aims to elucidate a potential gene target for which an approved drug is available, and to reveal the function as well as the underlying mechanism of the candidate gene. Here, we identified that ryanodine receptor 2 (RyR2) expression was upregulated in KRAS-mutant mCRC, and that this promoted cancer cell metastasis. S107, an approved drug to inhibit calcium release from RyR2 in the clinic, inhibited cancer cell metastasis both in vitro and in vivo. High expression of RyR2 predicts poor survival in our patient cohort. CRC patients with serosa invasion and vascular tumor thrombus are characterized by high RyR2 expression. Analysis of expression profiles upon RyR2 knockdown and inhibition, revealed a set of metastasis-related molecules, and identified BTB domain and CNC homolog 1 (BACH1) as the main transcription factor regulated by RyR2. RyR2 regulates cellular reactive oxygen species (ROS) levels, which activates nuclear factor erythroid 2-related factor 2 (Nrf2; also known as NFE2L2) and HMOX1 expression, and thus BACH1 accumulation. Collectively, this study provides evidence that the RyR2/ROS/BACH1 axis may be a potential intervention target for CRC metastasis.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Neoplasias del Colon , Neoplasias Colorrectales , Humanos , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Dominio BTB-POZ , Neoplasias Colorrectales/patología , Metástasis de la Neoplasia , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
15.
Cancer Rep (Hoboken) ; 6(9): e1855, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37381647

RESUMEN

BACKGROUND: Esophageal neuroendocrine carcinoma (NEC) is a rare cancer with an extremely poor prognosis. The average overall survival of patients with metastatic disease is only 1 year. The efficacy of anti-angiogenic agents combined with immune checkpoint inhibitors remains unknown. CASE PRESENTATION: A 64-year-old man, initially diagnosed with esophageal NEC, underwent neoadjuvant chemotherapy and esophagectomy. Although the patient remained disease-free for 11 months, eventually the tumor progressed and did not respond to three lines of combined therapy (etoposide plus carboplatin with local radiotherapy, albumin-bound paclitaxel plus durvalumab, and irinotecan plus nedaplatin). The patient then received anlotinib plus camrelizumab, and a dramatic regression was observed (confirmed by positron emission tomography-computed tomography). The patient has been disease-free for over 29 months and has survived for over 4 years since diagnosis. CONCLUSION: Combined therapy with anti-angiogenic agents and immune checkpoint inhibitors may be a promising strategy for esophageal NEC, although more evidence is warranted to validate its efficacy.


Asunto(s)
Carcinoma Neuroendocrino , Neoplasias Esofágicas , Masculino , Humanos , Persona de Mediana Edad , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Esofágicas/patología , Carboplatino/uso terapéutico , Carcinoma Neuroendocrino/patología
16.
J Phys Chem Lett ; 14(49): 10863-10869, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38032733

RESUMEN

Solid electrolyte interphase (SEI) is regarded as a key factor to enable high power outputs of Lithium-ion batteries (LIBs). Herein, we demonstrate a modified electrolyte consisting of a novel electrolyte additive, 1H,1H,2H,2H-perfluorooctyltrimethoxysilane (FTMS) to construct a highly robust and stable SEI on a graphite anode for LIBs to enhance its rate performance. With 2% FTMS, the anode presents an improved capacity retention from 77.6 to 91.2% at 0.5 C after 100 cycles and an improved capacity from 86 to 229 mAh g-1 at 2 C. Experimental characterizations and theoretical calculations reveal that FTMS is preferentially absorbed and reduced on graphite to construct an interface chemistry with uniform fluoride-containing organic lithium salt and silicon-containing polymer, which exhibits high flexibility and conductivity and endows the SEI with high robustness and stability. This work provides an effective way to address the issue of slow lithium insertion/desertion kinetics of graphite anodes.

17.
Cell Death Differ ; 30(4): 1033-1046, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36739334

RESUMEN

Mutant TP53 proteins are thought to drive the development and sustained expansion of cancers at least in part through the loss of the wild-type (wt) TP53 tumour suppressive functions. Therefore, compounds that can restore wt TP53 functions in mutant TP53 proteins are expected to inhibit the expansion of tumours expressing mutant TP53. APR-246 has been reported to exert such effects in malignant cells and is currently undergoing clinical trials in several cancer types. However, there is evidence that APR-246 may also kill malignant cells that do not express mutant TP53. To support the clinical development of APR-246 it is important to understand its mechanism(s) of action. By establishing isogenic background tumour cell lines with different TP53/TRP53 states, we found that APR-246 can kill malignant cells irrespective of their TP53/TRP53 status. Accordingly, RNAseq analysis revealed that treatment with APR-246 induces expression of the same gene set in Eµ-Myc mouse lymphoma cells of all four possible TRP53 states, wt, wt alongside mutant, knockout and knockout alongside mutant. We found that depending on the type of cancer cell and the concentration of APR-246 used, this compound can kill malignant cells through induction of various programmed cell death pathways, including apoptosis, necroptosis and ferroptosis. The sensitivity of non-transformed cells to APR-246 also depended on the cell type. These findings reveal that the clinical testing of APR-246 should not be limited to cancers expressing mutant TP53 but expanded to cancers that express wt TP53 or are TP53-deficient.


Asunto(s)
Genes p53 , Proteína p53 Supresora de Tumor , Animales , Ratones , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Apoptosis , Línea Celular Tumoral , Mutación
18.
Cell Death Differ ; 30(2): 383-396, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36396719

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) has become a growing public health problem. However, the complicated pathogenesis of NAFLD contributes to the deficiency of effective clinical treatment. Here, we demonstrated that liver-specific loss of Arid2 induced hepatic steatosis and this progression could be exacerbated by HFD. Mechanistic study revealed that ARID2 repressed JAK2-STAT5-PPARγ signaling pathway by promoting the ubiquitination of JAK2, which was mediated by NEDD4L, a novel E3 ligase for JAK2. ChIP assay revealed that ARID2 recruited CARM1 to increase H3R17me2a level at the NEDD4L promoter and activated the transcription of NEDD4L. Moreover, inhibition of Jak2 by Fedratinib in liver-specific Arid2 knockout mice alleviated HFD-induced hepatic steatosis. Downregulation of ARID2 and the reverse correlation between ARID2 and JAK2 were also observed in clinical samples. Therefore, our study has revealed an important role of ARID2 in the development of NAFLD and provided a potential therapeutic strategy for NAFLD.


Asunto(s)
Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/patología , Hígado/metabolismo , Ratones Noqueados , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Dieta Alta en Grasa , Ubiquitinación , Ratones Endogámicos C57BL
19.
Cell Rep ; 42(4): 112340, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37027301

RESUMEN

Pancreatic progenitor cell differentiation and proliferation factor (PPDPF) has been reported to play a role in tumorigenesis. However, its function in hepatocellular carcinoma (HCC) remains poorly understood. In this study, we report that PPDPF is significantly downregulated in HCC and the decreased PPDPF expression indicates poor prognosis. In the dimethylnitrosamine (DEN)-induced HCC mouse model, hepatocyte-specific depletion of Ppdpf promotes hepatocarcinogenesis, and reintroduction of PPDPF into liver-specific Ppdpf knockout (LKO) mice inhibits the accelerated HCC development. Mechanistic study shows that PPDPF regulates nuclear factor κB (NF-κB) signaling through modulation of RIPK1 ubiquitination. PPDPF interacts with RIPK1 and facilitates K63-linked ubiquitination of RIPK1 via recruiting the E3 ligase TRIM21, which catalyzes K63-linked ubiquitination of RIPK1 at K140. In addition, liver-specific overexpression of PPDPF activates NF-κB signaling and attenuates apoptosis and compensatory proliferation in mice, which significantly suppresses HCC development. This work identifies PPDPF as a regulator of NF-κB signaling and provides a potential therapeutic candidate for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Carcinogénesis/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patología , FN-kappa B/metabolismo , Ubiquitinación
20.
Adv Sci (Weinh) ; 10(2): e2202448, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36453576

RESUMEN

The guanine nucleotide exchange factor (GEF) SOS1 catalyzes the exchange of GDP for GTP on RAS. However, regulation of the GEF activity remains elusive. Here, the authors report that PPDPF functions as an important regulator of SOS1. The expression of PPDPF is significantly increased in pancreatic ductal adenocarcinoma (PDAC), associated with poor prognosis and recurrence of PDAC patients. Overexpression of PPDPF promotes PDAC cell growth in vitro and in vivo, while PPDPF knockout exerts opposite effects. Pancreatic-specific deletion of PPDPF profoundly inhibits tumor development in KRASG12D -driven genetic mouse models of PDAC. PPDPF can bind GTP and transfer GTP to SOS1. Mutations of the GTP-binding sites severely impair the tumor-promoting effect of PPDPF. Consistently, mutations of the critical amino acids mediating SOS1-PPDPF interaction significantly impair the GEF activity of SOS1. Therefore, this study demonstrates a novel model of KRAS activation via PPDPF-SOS1 axis, and provides a promising therapeutic target for PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Ratones , Carcinoma Ductal Pancreático/genética , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Guanosina Trifosfato , Péptidos y Proteínas de Señalización Intracelular , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteína SOS1 , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA