Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Chem Soc Rev ; 53(5): 2643-2692, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38314836

RESUMEN

Immunotherapy harnesses the inherent immune system in the body to generate systemic antitumor immunity, offering a promising modality for defending against cancer. However, tumor immunosuppression and evasion seriously restrict the immune response rates in clinical settings. Catalytic nanomedicines can transform tumoral substances/metabolites into therapeutic products in situ, offering unique advantages in antitumor immunotherapy. Through catalytic reactions, both tumor eradication and immune regulation can be simultaneously achieved, favoring the development of systemic antitumor immunity. In recent years, with advancements in catalytic chemistry and nanotechnology, catalytic nanomedicines based on nanozymes, photocatalysts, sonocatalysts, Fenton catalysts, electrocatalysts, piezocatalysts, thermocatalysts and radiocatalysts have been rapidly developed with vast applications in cancer immunotherapy. This review provides an introduction to the fabrication of catalytic nanomedicines with an emphasis on their structures and engineering strategies. Furthermore, the catalytic substrates and state-of-the-art applications of nanocatalysts in cancer immunotherapy have also been outlined and discussed. The relationships between nanostructures and immune regulating performance of catalytic nanomedicines are highlighted to provide a deep understanding of their working mechanisms in the tumor microenvironment. Finally, the challenges and development trends are revealed, aiming to provide new insights for the future development of nanocatalysts in catalytic immunotherapy.


Asunto(s)
Nanoestructuras , Neoplasias , Humanos , Nanoestructuras/química , Nanotecnología , Nanomedicina , Neoplasias/tratamiento farmacológico , Inmunoterapia , Microambiente Tumoral
2.
Small ; 20(27): e2308459, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38348906

RESUMEN

The development of composites with highly efficient microwave absorption (MA) performance deeply depends on polarization loss, which can be induced by charge redistribution. Considering the fact that polarization centers can be easily obtained in graphene, herein, iron phthalocyanine (FePc) is used as polarization site to coordinate with nitrogen-doped graphene (FePc/N-rGO) to optimize MA performance comprehensively. The factors influencing MA properties focus on the interaction between FePc and N-rGO, and the change of dipole moments. The density functional theory (DFT) results demonstrated that FePc has strong interaction with N defect sites in graphene. The charge loss for FePc and charge accumulation for N-rGO occurred, leading to great increase of dipole moment, and the increased dipole moment can be acted as a descriptor to evaluate the enhanced polarization loss. Due to high charge redistribution capacity of N defect sites and FePc polarization centers, the FePc/N-rGO showed excellent MA properties in C band, and the minimum reflection loss value can reach -49.3 dB at 5.4 GHz with thickness of 3.8 mm. In addition, the fabric loaded with FePc/N-rGO showed good heat dissipation property. This work opens the door to the development of MA performance bound to polarization site with dipole moment.

3.
Small ; 20(30): e2311026, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38377298

RESUMEN

Electrochemical hydrogen evolution reaction (HER) from water splitting driven by renewable energy is considered a promising method for large-scale hydrogen production, and as an alternative to noble-metal electrocatalysts, molybdenum carbide (Mo2C) has exhibited effective HER performance. However, the strong bonding strength of intermediate adsorbed H (Hads) with Mo active site slows down the HER kinetics of Mo2C. Herein, using phase-transition strategy, hexagonal ß-Mo2C could be easily transferred to cubic δ-Mo2C through electron injection triggered by tungsten (W) doping, and heterointerface-rich Mo2C-based composites, including ß-Mo2C, δ-Mo2C, and MoO2, are presented. Experimental results and density functional theory calculations reveal that W doping mainly contributes to the phase-transition process, and the generated heterointerfaces are the dominant factor in inducing remarkable electron accumulation around Mo active sites, thus weakening the Mo─H coupling. Wherein, the ß-Mo2C/MoO2 interface plays an important role in optimizing the electronic structure of Mo 3d orbital and hydrogen adsorption Gibbs free energy (ΔGH*), enabling these Mo2C-based composites to have excellent intrinsic catalytic activity like low overpotential (η10 = 99.8 mV), small Tafel slope (60.16 dec-1), and good stability in 1 m KOH. This work sheds light on phase-transition engineering and offers a convenient route to construct heterointerfaces for large-scale HER production.

4.
Molecules ; 29(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38893396

RESUMEN

In recent years, significant advancements have been made in the research of photoswitchable probes. These probes undergo reversible structural and electronic changes upon light exposure, thus exhibiting vast potential in molecular detection, biological imaging, material science, and information storage. Through precisely engineered molecular structures, the photoswitchable probes can toggle between "on" and "off" states at specific wavelengths, enabling highly sensitive and selective detection of targeted analytes. This review systematically presents photoswitchable fluorescent and colorimetric probes built on various molecular photoswitches, primarily focusing on the types involving photoswitching in their detection and/or signal response processes. It begins with an analysis of various molecular photoswitches, including their photophysical properties, photoisomerization and photochromic mechanisms, and fundamental design concepts for constructing photoswitchable probes. The article then elaborates on the applications of these probes in detecting diverse targets, including cations, anions, small molecules, and biomacromolecules. Finally, it offers perspectives on the current state and future development of photoswitchable probes. This review aims to provide a clear introduction for researchers in the field and guidance for the design and application of new, efficient fluorescent and colorimetric probes.

5.
Molecules ; 29(2)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38257238

RESUMEN

Formaldehyde, a ubiquitous indoor air pollutant, plays a significant role in various biological processes, posing both environmental and health challenges. This comprehensive review delves into the latest advancements in electrochemical methods for detecting formaldehyde, a compound of growing concern due to its widespread use and potential health hazards. This review underscores the inherent advantages of electrochemical techniques, such as high sensitivity, selectivity, and capability for real-time analysis, making them highly effective for formaldehyde monitoring. We explore the fundamental principles, mechanisms, and diverse methodologies employed in electrochemical formaldehyde detection, highlighting the role of innovative sensing materials and electrodes. Special attention is given to recent developments in nanotechnology and sensor design, which significantly enhance the sensitivity and selectivity of these detection systems. Moreover, this review identifies current challenges and discusses future research directions. Our aim is to encourage ongoing research and innovation in this field, ultimately leading to the development of advanced, practical solutions for formaldehyde detection in various environmental and biological contexts.

6.
J Am Chem Soc ; 145(18): 10322-10332, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37097216

RESUMEN

Designing nanozymes that match natural enzymes have always been an attractive and challenging goal. In general, researchers mainly focus on the construction of metal centers and the control of non-metallic ligands of nanozyme to regulate their activities. However, this is not applicable to lactate oxidase, i.e., flavoenzymes with flavin mononucleotide (FMN)-dependent pathways. Herein, we propose a coordination strategy to mimic lactate oxidase based on engineering the electronic properties at the N center by modulating the Co number near N in the Cox-N nanocomposite. Benefitting from the manipulated coordination fields and electronic structure around the electron-rich N sites, Co4N/C possesses a precise recognition site for lactate and intermediate organization and optimizes the absorption energies for intermediates, leading to superior oxidation of the lactate α-C-sp(3)-H bond toward ketone. The optimized nanozyme delivers much improved anticancer efficacy by reversing the high lactate and the immunosuppressive state of the tumor microenvironment, subsequently achieving excellent tumor growth and distant metastasis inhibition. The developed Co4N/C NEs open a new window for building a bridge between chemical catalysis and biocatalysis.


Asunto(s)
Ácido Láctico , Neoplasias , Humanos , Nitrógeno , Oxigenasas de Función Mixta/química , Neoplasias/tratamiento farmacológico , Catálisis , Microambiente Tumoral
7.
Small ; 18(52): e2205252, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36344450

RESUMEN

Nanodrugs are becoming increasingly important in the treatment of bacterial infection, but their low penetration ability to bacterial biofilm is still the main challenge hindering their therapeutic effect. Herein, nitric oxide (NO)-driven nanomotor based on L-arginine (L-Arg) and gold nanoparticles (AuNPs) loaded dendritic mesoporous silica nanoparticles (AG-DMSNs) is fabricated. AG-DMSNs have the characteristics of cascade catalytic reaction, where glucose is first catalyzed by the asymmetrically distributed AuNPs with their glucose oxidase (GOx)- mimic property, which results in unilateral production of hydrogen peroxide (H2 O2 ). Then, L-Arg is oxidized by the produced H2 O2 to release NO, leading to the self-propelled movement. It is found that the active movement of nanomotor promotes the AG-DMSNs ability to penetrate biofilm, thus achieving good biofilm clearance in vitro. More importantly, AG-DMSNs nanomotor can eliminate the biofilm of methicillin-resistant Staphylococcus aureus (MRSA) in vivo without causing damage to normal tissues. This nanomotor provides a new platform for the treatment of bacterial infections.


Asunto(s)
Infecciones Bacterianas , Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina , Humanos , Óxido Nítrico , Oro/farmacología , Infecciones Bacterianas/tratamiento farmacológico , Biopelículas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
8.
Molecules ; 27(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36364319

RESUMEN

In recent decades, a number of functional nanomaterials have attracted a great amount of attention and exhibited excellent performance for biomedical and pharmaceutical applications [...].


Asunto(s)
Nanomedicina , Nanoestructuras , Nanoestructuras/química , Humanos
9.
J Nanobiotechnology ; 19(1): 179, 2021 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-34120620

RESUMEN

BACKGROUND: Non-Hodgkin's lymphoma (NHL) is a malignant disease of lymphoid tissue. At present, chemotherapy is still the main method for the treatment of NHL. R-CHOP can significantly improve the survival rate of patients. Unfortunately, DOX is the main cytotoxic drug in R-CHOP and it can lead to adverse reactions. Therefore, it is particularly important to uncover new treatment options for NHL. RESULTS: In this study, a novel anti-tumor nanoparticle complex Nm@MSNs-DOX/SM was designed and constructed in this study. Mesoporous silica nanoparticles (MSNs) loaded with Doxorubicin (DOX) and anti-inflammatory drugs Shanzhiside methylester (SM) were used as the core of nanoparticles. Neutrophil membrane (Nm) can be coated with multiple nanonuclei as a shell. DOX combined with SM can enhance the anti-tumor effect, and induce apoptosis of lymphoma cells and inhibit the expression of inflammatory factors related to tumorigenesis depending on the regulation of Bcl-2 family-mediated mitochondrial pathways, such as TNF-α and IL-1ß. Consequently, the tumor microenvironment (TME) was reshaped, and the anti-tumor effect of DOX was amplified. Besides, Nm has good biocompatibility and can enhance the EPR effect of Nm@MSNs-DOX/SM and increase the effect of active targeting tumors. CONCLUSIONS: This suggests that the Nm-modified drug delivery system Nm@MSNs-DOX/SM is a promising targeted chemotherapy and anti-inflammatory therapy nanocomplex, and may be employed as a specific and efficient anti-Lymphoma therapy.


Asunto(s)
Biomimética/métodos , Sistemas de Liberación de Medicamentos/métodos , Linfoma/tratamiento farmacológico , Neutrófilos/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Modelos Animales de Enfermedad , Doxorrubicina/administración & dosificación , Portadores de Fármacos/farmacología , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Tamaño de la Partícula , Dióxido de Silicio/farmacología , Microambiente Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
10.
J Nanobiotechnology ; 19(1): 8, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407527

RESUMEN

BACKGROUND: Non-Hodgkin's lymphoma (NHL) possesses great heterogeneity in cytogenetics, immunophenotype and clinical features, and chemotherapy currently serves as the main treatment modality. Although employing monoclonal antibody targeted drugs has significantly improved its overall efficacy, various patients continue to suffer from drug resistance or recurrence. Chinese medicine has long been used in the treatment of malignant tumors. Therefore, we constructed a low pH value sensitivity drug delivery system based on the cancer cell membrane modified mesoporous silica nanoparticles loaded with traditional Chinese medicine, which can reduce systemic toxicity and improve the therapeutic effect for the targeted drug delivery of tumor cells. RESULTS: Accordingly, this study put forward the construction of a nano-platform based on mesoporous silica nanoparticles (MSNs) loaded with the traditional Chinese medicine isoimperatorin (ISOIM), which was camouflaged by the cancer cell membrane (CCM) called CCM@MSNs-ISOIM. The proposed nano-platform has characteristics of immune escape, anti-phagocytosis, high drug loading rate, low pH value sensitivity, good biocompatibility and active targeting of the tumor site, blocking the lymphoma cell cycle and promoting mitochondrial-mediated apoptosis. CONCLUSIONS: Furthermore, this study provides a theoretical basis in finding novel clinical treatments for lymphoma.


Asunto(s)
Antineoplásicos/administración & dosificación , Membrana Celular , Portadores de Fármacos/farmacología , Sistemas de Liberación de Medicamentos/métodos , Linfoma/tratamiento farmacológico , Nanopartículas/química , Animales , Apoptosis/efectos de los fármacos , Materiales Biocompatibles , Proliferación Celular , Modelos Animales de Enfermedad , Furocumarinas/farmacología , Humanos , Medicina Tradicional China , Ratones Desnudos , Especies Reactivas de Oxígeno , Dióxido de Silicio
11.
Angew Chem Int Ed Engl ; 58(48): 17425-17432, 2019 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-31552695

RESUMEN

Current cancer therapy is seriously challenged by tumor metastasis and recurrence. One promising solution to these problems is to build antitumor immunity. However, immunotherapeutic efficacy is highly impeded by the immunosuppressive state of the tumors. Here a new strategy is presented, catalytic immunotherapy based on artificial enzymes. Cu2-x Te nanoparticles exhibit tunable enzyme-mimicking activity (including glutathione oxidase and peroxidase) under near-infrared-II (NIR-II) light. The cascade reactions catalyzed by the Cu2-x Te artificial enzyme gradually elevates intratumor oxidative stress to induce immunogenic cell death. Meanwhile, the continuously generated oxidative stress by the Cu2-x Te artificial enzyme reverses the immunosuppressive tumor microenvironment, and boosts antitumor immune responses to eradicate both primary and distant metastatic tumors. Moreover, immunological memory effect is successfully acquired after treatment with the Cu2-x Te artificial enzyme to suppress tumor relapse.


Asunto(s)
Antineoplásicos/química , Materiales Biomiméticos/química , Cobre/química , Inmunosupresores/química , Nanopartículas del Metal/química , Telurio/química , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Catálisis , Línea Celular Tumoral , Citocinas/metabolismo , Humanos , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Inmunosupresores/farmacología , Inmunoterapia , Rayos Infrarrojos , Cinética , Ratones Endogámicos BALB C , Neoplasias Experimentales , Estrés Oxidativo/efectos de los fármacos , Oxidorreductasas/química , Peroxidasa/química , Fotoquimioterapia , Especies Reactivas de Oxígeno/metabolismo , Microambiente Tumoral/efectos de los fármacos
12.
Small ; 14(1)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29148623

RESUMEN

Fabrication of clinically translatable nanoparticles (NPs) as photothermal therapy (PTT) agents against cancer is becoming increasingly desirable, but still challenging, especially in facile and controllable synthesis of biocompatible NPs with high photothermal efficiency. A new strategy which uses protein as both a template and a sulfur provider is proposed for facile, cost-effective, and large-scale construction of biocompatible metal sulfide NPs with controlled structure and high photothermal efficiency. Upon mixing proteins and metal ions under alkaline conditions, the metal ions can be rapidly coordinated via a biuret-reaction like process. In the presence of alkali, the inert disulfide bonds of S-rich proteins can be activated to react with metal ions and generate metal sulfide NPs under gentle conditions. As a template, the protein can confine and regulate the nucleation and growth of the metal sulfide NPs within the protein formed cavities. Thus, the obtained metal sulfides such as Ag2 S, Bi2 S3 , CdS, and CuS NPs are all with small size and coated with proteins, affording them biocompatible surfaces. As a model material, CuS NPs are evaluated as a PTT agent for cancer treatment. They exhibit high photothermal efficiency, high stability, water solubility, and good biocompatibility, making them an excellent PTT agent against tumors. This work paves a new avenue toward the synthesis of structure-controlled and biocompatible metal sulfide NPs, which can find wide applications in biomedical fields.


Asunto(s)
Proteínas/química , Sulfuros/química , Azufre/química , Compuestos de Cadmio/química , Cobre/química , Nanopartículas del Metal/química , Fototerapia/métodos , Plata/química , Solubilidad
13.
Luminescence ; 33(5): 816-836, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29900656

RESUMEN

Hydrazine (N2 H4 ) is an important and commonly used chemical reagent for the preparation of textile dyes, pharmaceuticals, pesticides and so on. Despite its widespread industrial applications, hydrazine is highly toxic and exposure to this chemical can cause many symptoms and severe damage to the liver, kidneys, and central nervous system. As a consequence, many efforts have been devoted to the development of fluorescent probes for the selective sensing and/or imaging of N2 H4 . Although great efforts have been devoted in this area, the large number of important recent studies have not yet been systematically discussed in a review format so far. In this review, we have summarized the recently reported fluorescent N2 H4 probes, which are classified into several categories on the basis of the recognition moieties. Moreover, the sensing mechanism and probes designing strategy are also comprehensively discussed on aspects of the unique chemical characteristics of N2 H4 and the structures and spectral properties of fluorophores.


Asunto(s)
Colorantes Fluorescentes/química , Hidrazinas/análisis , Hidrazinas/química , Enlace de Hidrógeno , Cetonas/química , Ácidos Levulínicos/química , Nitrilos/química
14.
Anal Chem ; 88(18): 9136-42, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27553903

RESUMEN

Merocyanine dyes, owing to their unique photochemical properties, are widely used to fabricate probes for the detection of biologically active small molecules and bioimaging. In this paper, merocyanine-based probes were proved of undergoing unwanted hydrolysis. To explore the strategies toward avoiding the hydrolysis, the detailed hydrolysis mechanism was first investigated, which was also confirmed by density functional theory (DFT) calculation. Then a series of merocyanine dyes were rationally designed. Influences of molecular structures of the probes, the analytical media such as pH and components of the solution on the hydrolysis were systematically studied. The experimental results suggest that merocyanine based probes with low electron density are more likely to suffer the hydrolysis, which could be exacerbated by the well-accepted strategy for constructing type-II probes. It is worth noting that chemical surroundings could also exert distinctive influence on the hydrolysis. The hydrolysis could be obviously aggravated when fetal calf serum or DMSO was deployed. Our findings will definitely provide an effective and reliable approach for guiding the rational design of highly robust merocyanine-based probes and the optimization of the analytical media, which is helpful in terms of avoiding the hydrolysis of the probes and hydrolysis caused analytical errors.


Asunto(s)
Benzopiranos/química , Colorantes/química , Indoles/química , Pirimidinonas/química , Animales , Técnicas Biosensibles , Bovinos , Dimetilsulfóxido/química , Hidrólisis , Modelos Moleculares , Teoría Cuántica , Suero/química
15.
Heliyon ; 10(5): e26732, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38449666

RESUMEN

Ganoderma lucidum polysaccharides (G. PS) have been recognized for their immune-modulating properties. In this study, we investigated the impact of G. PS in a sepsis mouse model, exploring its effects on survival, inflammatory cytokines, Treg cell differentiation, bacterial load, organ dysfunction, and related pathways. We also probed the role of macrophages through chlorphosphon-liposome pretreatment. Using the cecal ligation and puncture (CLP) model, we categorized mice into normal, PBS, and G. PS injection groups. G. PS significantly enhanced septic mouse survival, regulated inflammatory cytokines (TNF-α, IL-17A, IL-6, IL-10), and promoted CD4+Foxp3+ Treg cell differentiation in spleens. Additionally, G. PS reduced bacterial load, mitigated organ damage, and suppressed the NF-κB pathway. In vitro, G. PS facilitated CD4+ T cell differentiation into Treg cells via the p-STAT5 pathway. Chlorphosphon-liposome pretreatment heightened septic mortality, bacterial load, biochemical markers, and organ damage, emphasizing macrophages' involvement. G. PS demonstrated significant protective effects in septic mice by modulating inflammatory responses, enhancing Treg cell differentiation, diminishing bacterial load, and inhibiting inflammatory pathways. These findings illuminate the therapeutic potential of G. PS in sepsis treatment.

16.
Int J Biol Macromol ; 263(Pt 1): 130225, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38368973

RESUMEN

The study presents a multifunctional catechol-modified chitosan (Chi-Ca)/oxidized dextran (Dex-CHO) hydrogel (CDP-PB) that possesses antibacterial, antioxidant, and pro-angiogenic properties, aimed at improving the healing of diabetic wounds. The achievement of the as-prepared CDP-PB hydrogel with superb antibacterial property (99.9 %) can be realized through the synergistic effect of phenylboronic acid-modified polyethyleneimine (PEI-PBA) and photothermal therapy (PTT) of polydopamine nanoparticles loaded with the nitric oxide (NO) donor BNN6 (PDA@BNN6). Notably, CDP-PB hydrogel achieves ∼3.6 log10 CFU/mL MRSA of inactivation efficiency under 808 nm NIR laser irradiation. In order to mitigate oxidative stress, the Chi-Ca was synthesized and afterward subjected to a reaction with Dex-CHO via a Schiff-base reaction. The catechol-containing hydrogel demonstrated its effectiveness in scavenging DPPH, •OH, and ABTS radicals (> 85 %). In addition, the cellular experiment illustrates the increased migration and proliferation of cells by the treatment of CDP-PB hydrogel in the presence of oxidative stress conditions. Moreover, the findings from the animal model experiments provide evidence that the CDP-PB hydrogel exhibited efficacy in the eradication of wound infection, facilitation of angiogenesis, stimulation of granulation, and augmentation of collagen deposition. These results indicate the potential of the CDP-PB hydrogel for use in clinical applications.


Asunto(s)
Quitosano , Diabetes Mellitus , Staphylococcus aureus Resistente a Meticilina , Animales , Antioxidantes/farmacología , Óxido Nítrico , Hidrogeles/farmacología , Dextranos , Cicatrización de Heridas , Catecoles , Antibacterianos/farmacología
17.
Iran J Basic Med Sci ; 27(10): 1309-1316, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39229574

RESUMEN

Objectives: Gefitinib (GEF) is a targeted medicine used to treat locally advanced or metastatic non-small cell lung cancer (NSCLC). However, GEF's hepatotoxicity limits its clinical use. This study aims to investigate the protective effect of naringin (NG) against GEF-induced hepatotoxicity. Materials and Methods: Fifty female ICR mice were randomly divided into 5 groups: Control, GEF (200 mg/kg), NG (50 mg/kg) + GEF (200 mg/kg), NG (100 mg/kg) +GEF (200 mg/kg), NG (200 mg/kg) +GEF (200 mg/kg). After 4 weeks of continuous administration, the mice were euthanized. The blood and liver tissue samples were collected. Results: The results indicated that the GEF group showed increased liver index, liver enzyme activities, and decreased glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) activities. Some hepatocytes showed hydropic degeneration and focal necrosis. Cell apoptosis, Cleaved-caspase3, and Poly (ADP-ribose) polymerase 1 (PARP1) increased. Transmission electron microscopy revealed the presence of numerous autophagic lysosomes or autophagosomes around the cell nucleus. Compared to the GEF group, NG can reverse these changes. Conclusion: In summary, NG alleviates GEF-induced hepatotoxicity by anti-oxidation, inhibiting cell apoptosis, and autophagy. Therefore, this study suggests the use of NG to mitigate GEF's toxicity to the liver.

18.
J Control Release ; 373: 837-852, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059499

RESUMEN

mRNA delivery systems, such as lipid nanoparticle (LNP), have made remarkable strides in improving mRNA expression, whereas immune system activation operates on a threshold. Maintaining a delicate balance between antigen expression and dendritic cell (DC) activation is vital for effective immune recognition. Here, a water-in-oil-in-water (w/o/w) Pickering emulsion stabilized with calcium phosphate nanoparticles (CaP-PME) is developed for mRNA delivery in cancer vaccination. CaP-PME efficiently transports mRNA into the cytoplasm, induces pro-inflammatory responses and activates DCs by disrupting intracellular calcium/potassium ions balance. Unlike LNP, CaP-PME demonstrates a preference for DCs, enhancing their activation and migration to lymph nodes. It elicits interferon-γ-mediated CD8+ T cell responses and promotes NK cell proliferation and activation, leading to evident NK cells infiltration and ameliorated tumor microenvironment. The prepared w/o/w Pickering emulsion demonstrates superior anti-tumor effects in E.G7 and B16-OVA tumor models, offering promising prospects as an enhanced mRNA delivery vehicle for cancer vaccinations.


Asunto(s)
Fosfatos de Calcio , Vacunas contra el Cáncer , Células Dendríticas , Emulsiones , Células Asesinas Naturales , Ratones Endogámicos C57BL , Nanopartículas , ARN Mensajero , Animales , Células Dendríticas/inmunología , Células Asesinas Naturales/inmunología , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/inmunología , Fosfatos de Calcio/química , Nanopartículas/química , Nanopartículas/administración & dosificación , ARN Mensajero/administración & dosificación , Femenino , Línea Celular Tumoral , Ratones , Neoplasias/terapia , Neoplasias/inmunología , Linfocitos T CD8-positivos/inmunología , Melanoma Experimental/inmunología , Melanoma Experimental/terapia
19.
Macromol Biosci ; 23(12): e2300214, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37526220

RESUMEN

Intelligent hydrogels are materials with abilities to change their chemical nature or physical structure in response to external stimuli showing promising potential in multitudinous applications. Especially, photo-thermo coupled responsive hydrogels that are prepared by encapsulating photothermal agents into thermo-responsive hydrogel matrix exhibit more attractive advantages in biomedical applications owing to their spatiotemporal control and precise therapy. This work summarizes the latest progress of the photo-thermo coupled responsive hydrogel in biomedical applications. Three major elements of the photo-thermo coupled responsive hydrogel, i.e., thermo-responsive hydrogel matrix, photothermal agents, and construction methods are introduced. Furthermore, the recent developments of these hydrogels for biomedical applications are described with some selected examples. Finally, the challenges and future perspectives for photo-thermo coupled responsive hydrogels are outlined.


Asunto(s)
Hidrogeles , Hidrogeles/farmacología , Hidrogeles/química
20.
Nanomicro Lett ; 15(1): 216, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737506

RESUMEN

Artificial cells are constructed from synthetic materials to imitate the biological functions of natural cells. By virtue of nanoengineering techniques, artificial cells with designed biomimetic functions provide alternatives to natural cells, showing vast potential for biomedical applications. Especially in cancer treatment, the deficiency of immunoactive macrophages results in tumor progression and immune resistance. To overcome the limitation, a BaSO4@ZIF-8/transferrin (TRF) nanomacrophage (NMΦ) is herein constructed as an alternative to immunoactive macrophages. Alike to natural immunoactive macrophages, NMΦ is stably retained in tumors through the specific affinity of TRF to tumor cells. Zn2+ as an "artificial cytokine" is then released from the ZIF-8 layer of NMΦ under tumor microenvironment. Similar as proinflammatory cytokines, Zn2+ can trigger cell anoikis to expose tumor antigens, which are selectively captured by the BaSO4 cavities. Therefore, the hierarchical nanostructure of NMΦs allows them to mediate immunogenic death of tumor cells and subsequent antigen capture for T cell activation to fabricate long-term antitumor immunity. As a proof-of-concept, the NMΦ mimics the biological functions of macrophage, including tumor residence, cytokine release, antigen capture and immune activation, which is hopeful to provide a paradigm for the design and biomedical applications of artificial cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA