Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Opt Express ; 29(17): 27845-27870, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34615192

RESUMEN

Deep learning is an important aspect of artificial intelligence and has been applied successfully in many optics-related fields. This paper proposes a generalized framework for generation of starting points for freeform imaging optical design based on deep learning. Compared with our previous work, this framework can be used for highly nonrotationally symmetric freeform refractive, reflective, and catadioptric systems. The system parameters can be advanced and the ranges of these system parameters can be wide. Using a special system evolution method and a K-nearest neighbor method, a full dataset consisting of the primary and secondary parts can be generated automatically. The deep neural network can then be trained in a supervised manner and can be used to generate good starting points directly. The convenience and feasibility of the proposed framework are demonstrated by designing a freeform off-axis three-mirror imaging system, a freeform off-axis four-mirror afocal telescope, and a freeform prism for an augmented reality near-eye display. The design framework reduces the designer's time and effort significantly and their dependence on advanced design skills. The framework can also be integrated into optical design software and cloud servers for the convenience of more designers.

2.
Opt Express ; 24(6): 6783-92, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-27136864

RESUMEN

Metamaterial absorbers have been demonstrated across much of the electromagnetic spectrum and exhibit both broad and narrow-band absorption for normally incident radiation. Absorption diminishes for increasing angles of incidence and transverse electric polarization falls off much more rapidly than transverse magnetic. We unambiguously demonstrate that broad-angle TM behavior cannot be associated with periodicity, but rather is due to coupling with a surface electromagnetic mode that is both supported by, and well described via the effective optical constants of the metamaterial where we achieve a resonant wavelength that is 19.1 times larger than the unit cell. Experimental results are supported by simulations and we highlight the potential to modify the angular response of absorbers by tailoring the surface wave.

3.
Plants (Basel) ; 13(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38891257

RESUMEN

The rapid restoration and renewal of the moso bamboo logging zone after strip logging has emerged as a key research area, particularly regarding whether nutrient accumulation and utilization in reserve zones can aid in the restoration and regeneration of the logging zone. In this study, a dynamic 15N isotope tracking experiment was conducted by injecting labeled urea fertilizer into bamboo culms. Logging zones and reserve zones of 6 m, 8 m, and 10 m widths were established. The conventional selective logging treatment served as a control (Con). Measurements were taken in May and October to assess the differences in nitrogen accumulation ability, utilization rates, and nutrient content across different organs in bamboo forests at different growth stages and under different treatments. Principal component analysis was conducted to evaluate and determine the importance of each indicator and strip logging treatment comprehensively. The results showed that various bamboo organs exhibited higher nitrogen accumulation and utilization rates during the peak growth period compared to the late growth period. Leaves had the highest nitrogen accumulation and utilization rates than the other organs. The average C content in various bamboo organs under different logging treatments exhibited subtle differences, irrespective of variation in logging width treatments. Bamboo culm exhibited the highest carbon accumulation. The C content in various bamboo organs was higher during the peak growth period than in the late growth period. The nitrogen content peaked in the leaves during the two growth stages and was significantly higher compared to the other organs. Most bamboo organs in the logging zones exhibited relatively higher nitrogen content than in the reserve zone and Con group. The P content was highest in bamboo leaves compared with other organs across the different strip logging treatments. Principal component analysis revealed relatively high absolute values of the coefficients for the C content, bamboo stump C content, and culm Ndff%. Log8 and Res10 zones had the highest comprehensive evaluation scores, indicating that Log8 and Res10 had the best effect on the promotion of nitrogen utilization and nutrient accumulation in various organs of moso bamboo.

4.
Phys Rev Lett ; 110(17): 177403, 2013 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-23679774

RESUMEN

We present an experimental demonstration of electronically tunable metamaterial absorbers in the terahertz regime. By incorporation of active liquid crystal into strategic locations within the metamaterial unit cell, we are able to modify the absorption by 30% at 2.62 THz, as well as tune the resonant absorption over 4% in bandwidth. Numerical full-wave simulations match well to experiments and clarify the underlying mechanism, i.e., a simultaneous tuning of both the electric and magnetic response that allows for the preservation of the resonant absorption. These results show that fundamental light interactions of surfaces can be dynamically controlled by all-electronic means and provide a path forward for realization of novel applications.

5.
Plants (Basel) ; 12(24)2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38140477

RESUMEN

Currently, research on the F. hodginsii asexual lineage primarily focuses on the screening of growth traits and the control of single fertilizer applications. The effects of the heterogeneity of soil nutrients on root growth and activity have not been studied in detail. Therefore, we propose forest management measures to improve the foraging ability of forest trees in conjunction with stand productivity. In this experiment, annual containerized seedlings of 10 free-pollinated F. hodginsii lines from a primary asexual seed orchard were used as test subjects, and three heterogeneous nutrient environments of nitrogen (N), phosphorus (P), and potassium (K) were constructed. In contrast, homogeneous nutrient environments were used as the control to carry out potting experiments, to study the growth of F. hodginsii lines and the differences in the activities of root enzymes under the three heterogeneous nutrient environments, and to carry out the comprehensive evaluation using the principal component and cluster analysis method. The results were as follows: (1) The seedling height of F. hodginsii family lines under a homogeneous nutrient environment was significantly higher than that of all heterogeneous nutrient environments; the diameter of the ground was the highest under N heterogeneous nutrient environment and significantly higher than that of all the other nutrient environments; the biomass of the root system was the highest under P heterogeneous nutrient environment, which was significantly higher than that of homogeneous nutrient environment and K heterogeneous nutrient environment. The catalase (CAT) activity of F. hodginsii roots was higher than that of homogeneous nutrients in all heterogeneous nutrient environments but not significant, and the superoxide dismutase (SOD) activity was slightly higher than that of K heterogeneous and homogeneous nutrient environments in N and P heterogeneous nutrient environments. SOD activity was slightly higher than that of K heterogeneous and homogeneous nutrient environments under N, and P. peroxidase (POD) activity in the F. hodginsii root system was the highest under the P heterogeneous nutrient environment, which was significantly higher than that of the other nutrient environments. Unlike the activities of the enzymes, the content of malondialdehyde (MDA) in the roots of F. hodginsii was higher in the heterogeneous environment than in all the other nutrient environments. (2) Under N and P heterogeneous nutrient environments, lines 552 and 590 had higher seedling height, ground diameter, and root enzyme activity, while root biomass was highest in line 544; and under K heterogeneous nutrient environments, line 591 had higher seedling height, ground diameter, and root enzyme activity while root biomass was highest in line 551. In contrast to the patterns of seedling height, accumulation of root biomass and activities of root enzymes, family No. 590 had the highest ground diameter of all the F. hodginsii families under the heterogeneous nutrient environments. Family No. 547 had the highest MDA content. In conclusion, it can be seen that N heterogeneous and homogeneous nutrient environments can significantly increase the seedling height and diameter of F. hodginsii compared with P and K heterogeneous nutrient environments, and N and P heterogeneous nutrient environments can also increase the root biomass, root enzyme activities and significantly reduce the MDA content of F. hodginsii. According to the principal component analysis and cluster analysis, it can be seen that among the 10 F. hodginsii family lines, family lines 590 and 552 have higher evaluation in growth, root biomass accumulation, and enzyme activity.

6.
Front Plant Sci ; 14: 1327322, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38298603

RESUMEN

Introduction: Critical changes often occur in Fokienia hodginsii seedlings during the process of growth owing to differences in the surrounding environment. The most common differences are heterogeneous nutrient environments and competition from neighboring plants. Methods: In this study, we selected one-year-old, high-quality Fokienia hodginsii seedlings as experimental materials. Three planting patterns were established to simulate different competitive treatments, and seedlings were also exposed to three heterogeneous nutrient environments and a homogeneous nutrient environment (control) to determine their effect on the root morphology and structure of F. hodginsii seedlings. Results: Heterogeneous nutrient environments, compared with a homogeneous environment, significantly increased the dry matter accumulation and root morphology indexes of the root system of F. hodginsii, which proliferated in nutrient-rich patches, and the P heterogeneous environment had the most significant enhancement effect, with dry matter accumulation 70.2%, 7.0%, and 27.0% higher than that in homogeneous and N and K heterogeneous environments, respectively. Homogeneous environments significantly increased the specific root length and root area of the root system; the dry matter mass and morphological structure of the root system of F. hodginsii with a heterospecific neighbor were higher than those under conspecific neighbor and single-plant treatments, and the root area of the root system under the conspecific neighbor treatment was higher than that under the heterospecific neighbor treatment, by 20% and 23%, respectively. Moreover, the root system under heterospecific neighbor treatment had high sensitivity; the heterogeneous nutrient environment increased the mean diameter of the fine roots of the seedlings of F. hodginsii and the diameter of the vascular bundle, and the effect was most significant in the P heterogeneous environment, exceeding that in the N and K heterogeneous environments. The effect was most significant in the P heterogeneous environment, which increased fine root diameter by 20.5% and 10.3%, respectively, compared with the homogeneous environment; in contrast, the fine root vascular ratio was highest in the homogeneous environment, and most of the indicators of the fine root anatomical structure in the nutrient-rich patches were of greater values than those in the nutrient-poor patches in the different heterogeneous environments; competition promoted most of the indicators of the fine root anatomical structure of F. hodginsii seedlings. According a principal component analysis (PCA), the N, Pm and K heterogeneous environments with heterospecific neighbors and the P heterogeneous environment with a conspecific neighbor had higher evaluation in the calculation of eigenvalues of the PCA. Discussion: The root dry matter accumulation, root morphology, and anatomical structure of F. hodginsii seedlings in the heterogeneous nutrient environment were more developed than those in the homogeneous nutrient environment. The effect of the P heterogeneous environment was the most significant. The heterospecific neighbor treatment was more conducive to the expansion and development of root morphology of F. hodginsii seedlings than were the conspecific neighbor and single-plant treatments.

7.
Nat Prod Res ; 20(8): 748-53, 2006 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-16753908

RESUMEN

Chemical investigation of the organic extract of a soft coral belonging to the genus Alcyonium furnished a steroid, 3alpha,7alpha,12alpha-triacetoxy-5beta-cholanic acid (1). The structure of steroid 1 was assigned on the basis of spectroscopic evidence, particularly in 1D and 2D NMR experiments. The configuration of steroid 1 was further supported by molecular mechanics calculations.


Asunto(s)
Antozoos/química , Ácidos Cólicos/aislamiento & purificación , Esteroides/aislamiento & purificación , Animales , Ácidos Cólicos/química , Espectroscopía de Resonancia Magnética , Conformación Molecular , Esteroides/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA