Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Proteome Res ; 21(3): 822-832, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34319108

RESUMEN

Infantile hemangioma (IH), the most common benign tumor in infancy, mostly arises and has rapid growth before 3 months of age. Because irreversible skin changes occur in the early proliferative stage, early medical treatment is essential to reduce the permanent sequelae caused by IH. Yet there are still no early screening biomarkers for IH before its visible emergence. This study aimed to explore prediction biomarkers using noninvasive umbilical cord blood (UCB). A prospective study of the metabolic profiling approach was performed on UCB sera from 28 infants with IH and 132 matched healthy controls from a UCB population comprising over 1500 infants (PeptideAtlas: PASS01675) using liquid chromatography-mass spectrometry. The metabolic profiling results exhibited the characteristic metabolic aberrance of IH. Machine learning suggested a panel of biomarkers to predict the occurrence of IH, with the area under curve (AUC) values in the receiver operating characteristic analysis all >0.943. Phenylacetic acid had potential to predict infants with large IH (diameter >2 cm) from those with small IH (diameter <2 cm), with an AUC of 0.756. The novel biomarkers in noninvasive UCB sera for predicting IH before its emergence might lead to a revolutionary clinical utility.


Asunto(s)
Sangre Fetal , Hemangioma , Biomarcadores , Cromatografía Liquida , Hemangioma/complicaciones , Hemangioma/diagnóstico , Hemangioma/tratamiento farmacológico , Humanos , Lactante , Estudios Prospectivos
2.
Gastroenterology ; 156(8): 2297-2312, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30836096

RESUMEN

BACKGROUND & AIMS: Interleukin 6 (IL6) and tumor necrosis factor contribute to the development of colitis-associated cancer (CAC). We investigated these signaling pathways and the involvement of G protein subunit alpha i1 (GNAI1), GNAI2, and GNAI3 in the development of CAC in mice and humans. METHODS: B6;129 wild-type (control) or mice with disruption of Gnai1, Gnai2, and/or Gnai3 or conditional disruption of Gnai2 in CD11c+ or epithelial cells were given dextran sulfate sodium (DSS) to induce colitis followed by azoxymethane (AOM) to induce carcinogenesis; some mice were given an antibody against IL6. Feces were collected from mice, and the compositions of microbiomes were analyzed by polymerase chain reactions. Dendritic cells (DCs) and myeloid-derived suppressor cells (MDSCs) isolated from spleen and colon tissues were analyzed by flow cytometry. We performed immunoprecipitation and immunoblot analyses of colon tumor tissues, MDSCs, and mouse embryonic fibroblasts to study the expression levels of GNAI1, GNAI2, and GNAI3 and the interactions of GNAI1 and GNAI3 with proteins in the IL6 signaling pathway. We analyzed the expression of Gnai2 messenger RNA by CD11c+ cells in the colonic lamina propria by PrimeFlow, expression of IL6 in DCs by flow cytometry, and secretion of cytokines in sera and colon tissues by enzyme-linked immunosorbent assay. We obtained colon tumor and matched nontumor tissues from 83 patients with colorectal cancer having surgery in China and 35 patients with CAC in the United States. Mouse and human colon tissues were analyzed by histology, immunoblot, immunohistochemistry, and/or RNA-sequencing analyses. RESULTS: GNAI1 and GNAI3 (GNAI1;3) double-knockout (DKO) mice developed more severe colitis after administration of DSS and significantly more colonic tumors than control mice after administration of AOM plus DSS. Development of increased tumors in DKO mice was not associated with changes in fecal microbiomes but was associated with activation of nuclear factor (NF) κB and signal transducer and activator of transcription (STAT) 3; increased levels of GNAI2, nitric oxide synthase 2, and IL6; increased numbers of CD4+ DCs and MDSCs; and decreased numbers of CD8+ DCs. IL6 was mainly produced by CD4+/CD11b+, but not CD8+, DCs in DKO mice. Injection of DKO mice with a blocking antibody against IL6 reduced the expansion of MDSCs and the number of tumors that developed after CAC induction. Incubation of MDSCs or mouse embryonic fibroblasts with IL6 induced activation of either NF-κB by a JAK2-TRAF6-TAK1-CHUK/IKKB signaling pathway or STAT3 by JAK2. This activation resulted in expression of GNAI2, IL6 signal transducer (IL6ST, also called GP130) and nitric oxide synthase 2, and expansion of MDSCs; the expression levels of these proteins and expansion of MDSCs were further increased by the absence of GNAI1;3 in cells and mice. Conditional disruption of Gnai2 in CD11c+ cells of DKO mice prevented activation of NF-κB and STAT3 and changes in numbers of DCs and MDSCs. Colon tumor tissues from patients with CAC had reduced levels of GNAI1 and GNAI3 and increased levels of GNAI2 compared with normal tissues. Further analysis of a public human colorectal tumor DNA microarray database (GSE39582) showed that low Gani1 and Gnai3 messenger RNA expression and high Gnai2 messenger RNA expression were significantly associated with decreased relapse-free survival. CONCLUSIONS: GNAI1;3 suppresses DSS-plus-AOM-induced colon tumor development in mice, whereas expression of GNAI2 in CD11c+ cells and IL6 in CD4+/CD11b+ DCs appears to promote these effects. Strategies to induce GNAI1;3, or block GNAI2 and IL6, might be developed for the prevention or therapy of CAC in patients.


Asunto(s)
Transformación Celular Neoplásica/genética , Colitis/patología , Neoplasias del Colon/patología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Animales , Biopsia con Aguja , Carcinogénesis , Colitis/genética , Neoplasias del Colon/genética , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Inmunohistoquímica , Interleucina-16/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Distribución Aleatoria , Valores de Referencia , Sensibilidad y Especificidad , Transducción de Señal/genética
3.
Cell Biol Toxicol ; 36(4): 349-364, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31907687

RESUMEN

Protein neddylation, a process of conjugating neural precursor cell expressed, developmentally downregulated 8 (NEDD8) to substrates, plays a tumor-promoting role in lung carcinogenesis. Our previous study showed MLN4924, an inhibitor of NEDD8 activating enzyme (E1), significantly inhibits the growth of multiple cancer cells. However, resistance can develop to MLN4924 by mutation. Therefore, it is important to further understand how NEDD8 acts in lung cancer. In the present study, we demonstrated NEDD8 is overactivated in lung cancers and confers a worse patient overall survival. Furthermore, we report that in lung adenocarcinoma cells, NEDD8 depletion significantly suppressed lung cancer cell growth and progression both in vitro and in vivo. Mechanistic studies revealed that NEDD8 depletion induced the accumulation of a panel of tumor-suppressive cullin-RING ubiquitin ligase substrates (e.g., p21, p27, and Wee1) via blocking their degradation, triggering cell cycle arrest at G2 phase, thus inducing apoptosis or senescence in a cell-line-dependent manner. The present study demonstrates the role of NEDD8 in regulating the malignant phenotypes of lung cancer cells and further validates NEDD8 as a potential therapeutic target in lung cancer.


Asunto(s)
Adenocarcinoma del Pulmón/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Proteína NEDD8/metabolismo , Adenocarcinoma del Pulmón/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ciclopentanos/farmacología , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Pirimidinas/farmacología , Transducción de Señal/efectos de los fármacos , Ubiquitina/metabolismo
4.
Cell Biol Toxicol ; 35(5): 471-483, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31102011

RESUMEN

Fructose is an important alternative carbon source for several tumors, and GLUT5 is the major fructose transporter which mediates most of fructose uptake in cells. So far, it is unclear whether GLUT5-mediated fructose utilization is important for clear cell renal cell carcinoma (ccRCC). Here, we demonstrated that GLUT5 was highly expressed in a panel of ccRCC cell lines. High GLUT5 expression exacerbated the neoplastic phenotypes of ccRCC cells, including cell proliferation and colony formation. On the other hand, deletion of the GLUT5-encoding gene SLC2A5 dramatically attenuated cellular malignancy via activating the apoptotic pathway. Moreover, administration of 2,5-anhydro-D-mannitol (2,5-AM), a competitive inhibitor of fructose uptake, could markedly suppress ccRCC cell growth. Together, we provide a new mechanistic insight for GLUT5-mediated fructose utilization in ccRCC cells and highlight the therapeutic potential for targeting this metabolic pathway against ccRCC.


Asunto(s)
Carcinoma de Células Renales/metabolismo , Fructosa/metabolismo , Transportador de Glucosa de Tipo 5/metabolismo , Neoplasias Renales/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Transporte Biológico , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Femenino , Fructosa/antagonistas & inhibidores , Células HEK293 , Xenoinjertos , Humanos , Neoplasias Renales/patología , Manitol/análogos & derivados , Manitol/farmacología , Ratones , Ratones Endogámicos BALB C , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
5.
FASEB J ; 31(9): 3904-3912, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28490483

RESUMEN

Bile acid (BA) signaling regulates fatty acid metabolism. BA dysregulation plays an important role in the development of metabolic disease. However, BAs in relation to fatty acids have not been fully investigated in obesity-related metabolic disorders. A targeted metabolomic measurement of serum BA and free fatty acid profiles was applied to sera of 381 individuals in 2 independent studies. The results showed that the ratio of dihomo-γ-linolenic acid (DGLA) to deoxycholic acid (DCA) species (DCAS) was significantly increased in obese individuals with type 2 diabetes (T2DM) from a case-control study and decreased in the remission group of obese subjects with T2DM after metabolic surgery. The changes were closely associated with their metabolic status. These results were consistently confirmed in both serum and liver of mice with diet-induced obesity, implying that such a metabolic alteration in circulation reflects changes occurring in the liver. In vitro studies of human liver L-02 cell lines under BA treatment revealed that DCA and its conjugated form, TDCA, significantly inhibited mRNA expression of fatty acid transport protein 5 in the presence of DGLA, which was involved in hepatocyte DGLA uptake. Thus, the DGLA:DCAS ratio may be a promising biomarker for metabolic abnormalities in obesity.-Lei, S., Huang, F., Zhao, A., Chen, T., Chen, W., Xie, G., Zheng, X., Zhang, Y., Yu, H., Zhang, P., Rajani, C., Bao, Y., Jia, W., Jia, W. The ratio of dihomo-γ-linolenic acid to deoxycholic acid species is a potential biomarker for the metabolic abnormalities in obesity.


Asunto(s)
Ácido 8,11,14-Eicosatrienoico/metabolismo , Ácido Desoxicólico/metabolismo , Obesidad/sangre , Adulto , Animales , Biomarcadores , Línea Celular , Ácido Desoxicólico/química , Dieta Alta en Grasa/efectos adversos , Femenino , Prueba de Tolerancia a la Glucosa , Hepatocitos/metabolismo , Humanos , Resistencia a la Insulina , Masculino , Ratones
6.
FASEB J ; 31(4): 1449-1460, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28007782

RESUMEN

Endogenous fatty acid metabolism that results in elongation and desaturation lipid products is thought to play a role in the development of type 2 diabetes mellitus (T2DM). In this study, we evaluated the potential of estimated elongase and desaturase activities for use as predictive markers for T2DM remission after Roux-en-Y gastric bypass (RYGB). The results of a targeted metabolomics approach from 2 independent studies were used to calculate 24 serum FA concentration ratios (product/precursor). Gene expression data from an open public data set was also analyzed. In a longitudinal study of 38 obese diabetic patients with RYGB, we found higher baseline stearic acid/palmitic acid (S/P) ratio. This ratio reflects an elovl6-encoded elongase enzyme activity that has been found to be associated with greater possibility for diabetes remission after RYGB [odds ratio, 2.16 (95% CI 1.10-4.26)], after adjustment for age, gender, body mass index, diabetes duration, glycosylated hemoglobin A1c, and fasting C-peptide. Our results were validated by examination of postsurgical elovl6 gene expression in morbidly obese patients. The association of S/P with the metabolic status of obese individuals was further validated in a cross-sectional cohort of 381 participants. In summary, higher baseline S/P was associated with greater probability of diabetes remission after RYGB and may serve as a diagnostic marker in preoperative patient assessment. - Zhao, L., Ni, Y., Yu, H., Zhang, P., Zhao, A., Bao, Y., Liu, J., Chen, T., Xie, G., Panee, J., Chen, W., Rajani, C., Wei, R., Su, M., Jia, W., Jia, W. Serum stearic acid/palmitic acid ratio as a potential predictor of diabetes remission after Roux-en-Y gastric bypass in obesity.


Asunto(s)
Diabetes Mellitus/sangre , Derivación Gástrica , Obesidad/cirugía , Ácido Palmítico/sangre , Ácidos Esteáricos/sangre , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Adulto , Anciano , Biomarcadores/sangre , Diabetes Mellitus/epidemiología , Elongasas de Ácidos Grasos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Obesidad/sangre , Obesidad/complicaciones
7.
Anal Chem ; 89(10): 5565-5577, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28437060

RESUMEN

The ability to identify and quantify small molecule metabolites derived from gut microbial-mammalian cometabolism is essential for the understanding of the distinct metabolic functions of the microbiome. To date, analytical protocols that quantitatively measure a complete panel of microbial metabolites in biological samples have not been established but are urgently needed by the microbiome research community. Here, we report an automated high-throughput quantitative method using a gas chromatography/time-of-flight mass spectrometry (GC/TOFMS) platform to simultaneously measure over one hundred microbial metabolites in human serum, urine, feces, and Escherichia coli cell samples within 15 min per sample. A reference library was developed consisting of 145 methyl and ethyl chloroformate (MCF and ECF) derivatized compounds with their mass spectral and retention index information for metabolite identification. These compounds encompass different chemical classes including fatty acids, amino acids, carboxylic acids, hydroxylic acids, and phenolic acids as well as benzoyl and phenyl derivatives, indoles, etc., that are involved in a number of important metabolic pathways. Within an optimized range of concentrations and sample volumes, most derivatives of both reference standards and endogenous metabolites in biological samples exhibited satisfactory linearity (R2 > 0.99), good intrabatch reproducibility, and acceptable stability within 6 days (RSD < 20%). This method was further validated by examination of the analytical variability of 76 paired human serum, urine, and fecal samples as well as quality control samples. Our method involved using high-throughput sample preparation, measurement with automated derivatization, and rapid GC/TOFMS analysis. Both techniques are well suited for microbiome metabolomics studies.


Asunto(s)
Escherichia coli/metabolismo , Formiatos/química , Ésteres del Ácido Fórmico/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Metaboloma , Automatización , Escherichia coli/química , Heces/química , Humanos , Análisis de Componente Principal , Reproducibilidad de los Resultados , Suero/química , Orina/química
8.
Arch Toxicol ; 91(1): 189-202, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26883664

RESUMEN

Arsenic (+3 oxidation state) methyltransferase (As3mt) is the key enzyme in the pathway for methylation of inorganic arsenic (iAs). Altered As3mt expression and AS3MT polymorphism have been linked to changes in iAs metabolism and in susceptibility to iAs toxicity in laboratory models and in humans. As3mt-knockout mice have been used to study the association between iAs metabolism and adverse effects of iAs exposure. However, little is known about systemic changes in metabolism of these mice and how these changes lead to their increased susceptibility to iAs toxicity. Here, we compared plasma and urinary metabolomes of male and female wild-type (WT) and As3mt-KO (KO) C57BL/6 mice and examined metabolomic shifts associated with iAs exposure in drinking water. Surprisingly, exposure to 1 ppm As elicited only small changes in the metabolite profiles of either WT or KO mice. In contrast, comparisons of KO mice with WT mice revealed significant differences in plasma and urinary metabolites associated with lipid (phosphatidylcholines, cytidine, acyl-carnitine), amino acid (hippuric acid, acetylglycine, urea), and carbohydrate (L-sorbose, galactonic acid, gluconic acid) metabolism. Notably, most of these differences were sex specific. Sex-specific differences were also found between WT and KO mice in plasma triglyceride and lipoprotein cholesterol levels. Some of the differentially changed metabolites (phosphatidylcholines, carnosine, and sarcosine) are substrates or products of reactions catalyzed by other methyltransferases. These results suggest that As3mt KO alters major metabolic pathways in a sex-specific manner, independent of iAs treatment, and that As3mt may be involved in other cellular processes beyond iAs methylation.


Asunto(s)
Intoxicación por Arsénico/enzimología , Arsénico/toxicidad , Metabolismo Energético/efectos de los fármacos , Metaboloma/efectos de los fármacos , Metiltransferasas/metabolismo , Contaminantes Químicos del Agua/toxicidad , Aminoácidos/metabolismo , Animales , Arsénico/sangre , Arsénico/metabolismo , Arsénico/orina , Intoxicación por Arsénico/sangre , Intoxicación por Arsénico/metabolismo , Intoxicación por Arsénico/orina , Arsenicales/sangre , Arsenicales/metabolismo , Arsenicales/orina , Biomarcadores/sangre , Biomarcadores/orina , Biotransformación , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Resistencia a Medicamentos , Femenino , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Metilación , Metiltransferasas/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Caracteres Sexuales , Toxicocinética , Contaminantes Químicos del Agua/sangre , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/orina
9.
J Proteome Res ; 15(7): 2327-36, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27267777

RESUMEN

Glucocorticoids are commonly used in anti-inflammatory and immunomodulatory therapies, but glucocorticoid withdrawal can result in life-threatening risk of adrenal insufficiency. Chinese patented pharmaceutical product Jinkui Shenqi pill (JKSQ) has potent efficacy on clinical adrenal insufficiency resulting from glucocorticoid withdrawal. However, the underlying molecular mechanism remains unclear. We used an animal model to study JKSQ-induced metabolic changes under adrenal insufficiency and healthy conditions. Sprague-Dawley rats were treated with hydrocortisone for 7 days with or without 15 days of JKSQ pretreatment. Sera were collected after 72 h hydrocortisone withdrawal and used for global and free fatty acids (FFAs)-targeted metabolomics analyses using gas chromatography/time-of-flight mass spectrometry and ultraperformance liquid chromatography/quadruple time-of-flight mass spectrometry. Rats without hydrocortisone treatment were used as controls. JKSQ pretreatment normalized the significant changes of 13 serum metabolites in hydrocortisone-withdrawal rats, involving carbohydrates, lipids, and amino acids. The most prominent effect of JKSQ was on the changes of FFAs and some [product FFA]/[precursor FFA] ratios, which represent estimated desaturase and elongase activities. The opposite metabolic responses of JKSQ in adrenal insufficiency rats and normal rats highlighted the "Bian Zheng Lun Zhi" (treatment based on ZHENG differentiation) guideline of TCM and suggested that altered fatty acid metabolism was associated with adrenal insufficiency after glucocorticoid withdrawal and the protective effects of JKSQ.


Asunto(s)
Insuficiencia Suprarrenal/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Metabolómica/métodos , Insuficiencia Suprarrenal/etiología , Insuficiencia Suprarrenal/metabolismo , Animales , China , Cromatografía Liquida , Ácidos Grasos no Esterificados/sangre , Cromatografía de Gases y Espectrometría de Masas , Glucocorticoides/efectos adversos , Hidrocortisona , Sustancias Protectoras/uso terapéutico , Ratas , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico , Síndrome de Abstinencia a Sustancias/metabolismo
10.
Int J Cancer ; 139(8): 1764-75, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27273788

RESUMEN

Dysregulated bile acids (BAs) are closely associated with liver diseases and attributed to altered gut microbiota. Here, we show that the intrahepatic retention of hydrophobic BAs including deoxycholate (DCA), taurocholate (TCA), taurochenodeoxycholate (TCDCA), and taurolithocholate (TLCA) were substantially increased in a streptozotocin and high fat diet (HFD) induced nonalcoholic steatohepatitis-hepatocellular carcinoma (NASH-HCC) mouse model. Additionally chronic HFD-fed mice spontaneously developed liver tumors with significantly increased hepatic BA levels. Enhancing intestinal excretion of hydrophobic BAs in the NASH-HCC model mice by a 2% cholestyramine feeding significantly prevented HCC development. The gut microbiota alterations were closely correlated with altered BA levels in liver and feces. HFD-induced inflammation inhibited key BA transporters, resulting in sustained increases in intrahepatic BA concentrations. Our study also showed a significantly increased cell proliferation in BA treated normal human hepatic cell lines and a down-regulated expression of tumor suppressor gene CEBPα in TCDCA treated HepG2 cell line, suggesting that several hydrophobic BAs may collaboratively promote liver carcinogenesis.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/metabolismo , Animales , Carcinogénesis/metabolismo , Carcinogénesis/patología , Línea Celular , Ácido Desoxicólico/metabolismo , Dieta Alta en Grasa , Femenino , Microbioma Gastrointestinal , Células Hep G2 , Humanos , Neoplasias Hepáticas/microbiología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas Experimentales/etiología , Neoplasias Hepáticas Experimentales/metabolismo , Neoplasias Hepáticas Experimentales/microbiología , Neoplasias Hepáticas Experimentales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/microbiología , Enfermedad del Hígado Graso no Alcohólico/patología , Embarazo , Estreptozocina , Ácido Tauroquenodesoxicólico/metabolismo , Ácido Taurocólico/metabolismo , Ácido Taurolitocólico/metabolismo
11.
Blood ; 124(10): 1645-54, 2014 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-25006128

RESUMEN

Acute myeloid leukemia (AML) is a group of hematological malignancies with high heterogeneity. There is an increasing need to improve the risk stratification of AML patients, including those with normal cytogenetics, using molecular biomarkers. Here, we report a metabolomics study that identified a distinct glucose metabolism signature with 400 AML patients and 446 healthy controls. The glucose metabolism signature comprises a panel of 6 serum metabolite markers, which demonstrated prognostic value in cytogenetically normal AML patients. We generated a prognosis risk score (PRS) with 6 metabolite markers for each patient using principal component analysis. A low PRS was able to predict patients with poor survival independently of well-established markers. We further compared the gene expression patterns of AML blast cells between low and high PRS groups, which correlated well to the metabolic pathways involving the 6 metabolite markers, with enhanced glycolysis and tricarboxylic [corrected] acid cycle at gene expression level in low PRS group. In vitro results demonstrated enhanced glycolysis contributed to decreased sensitivity to antileukemic agent arabinofuranosyl cytidine (Ara-C), whereas inhibition of glycolysis suppressed AML cell proliferation and potentiated cytotoxicity of Ara-C. Our study provides strong evidence for the use of serum metabolites and metabolic pathways as novel prognostic markers and potential therapeutic targets for AML.


Asunto(s)
Glucosa/metabolismo , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Transcriptoma , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Línea Celular Tumoral , Femenino , Células HEK293 , Células HL-60 , Humanos , Masculino , Redes y Vías Metabólicas/genética , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Pronóstico , Células U937 , Adulto Joven
12.
Proc Natl Acad Sci U S A ; 110(42): 17017-22, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24082129

RESUMEN

The 2-hydroxyglutarate (2-HG) has been reported to result from mutations of isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) genes and to function as an "oncometabolite." To evaluate the clinical significance of serum 2-HG levels in hematologic malignancies, acute myeloid leukemia (AML) in particular, we analyzed this metabolite in distinct types of human leukemia and lymphoma and established the range of serum 2-HG in appropriate normal control individuals by using gas chromatograph-time-of-flight mass spectrometry. Aberrant serum 2-HG pattern was detected in the multicenter group of AML, with 62 of 367 (17%) patients having 2-HG levels above the cutoff value (2.01, log2-transformed from 4.03 µg/mL). IDH1/2 mutations occurred in 27 of 31 (87%) AML cases with very high 2-HG, but were observed only in 9 of 31 (29%) patients with moderately high 2-HG, suggesting other genetic or biochemical events may exist in causing 2-HG elevation. Indeed, glutamine-related metabolites exhibited a pattern in favor of 2-HG synthesis in the high 2-HG group. In AML patients with cytogenetically normal AML (n = 234), high 2-HG represented a negative prognostic factor in both overall survival and event-free survival. Univariate and multivariate analyses confirmed high serum 2-HG as a strong prognostic predictor independent of other clinical and molecular features. We also demonstrated distinct gene-expression/DNA methylation profiles in AML blasts with high 2-HG compared with those with normal ones, supporting a role that 2-HG plays in leukemogenesis.


Asunto(s)
Glutaratos/sangre , Leucemia Mieloide Aguda/sangre , Leucemia Mieloide Aguda/mortalidad , China/epidemiología , Metilación de ADN/genética , Supervivencia sin Enfermedad , Femenino , Regulación Leucémica de la Expresión Génica/genética , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Masculino , Persona de Mediana Edad , Mutación , Tasa de Supervivencia
13.
Oncogene ; 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39394448

RESUMEN

The essential amino acid methionine is a crucial regulator of sulfur metabolism in a variety of interconnected biochemical pathways. The methionine cycle is intricately linked to the folate cycle, forming the one-carbon metabolism, a crucial regulator of S-adenosylmethionine, SAM. Recent work highlights methionine's critical role in tumor growth and progression, maintaining polyamine synthesis, and playing a crucial role in the regulation of SAM both in altered chromatin states, depending on p53 status, as well as facilitating m6A methylation of NR4A2 mRNA, hence regulating proliferation in esophageal carcinoma. Accordingly, Celecoxib, a specific NR4A2 inhibitor, is a potentially powerful inhibitor of tumor growth at least in this specific model. Additionally, formaldehyde, from endogenous or exogenous sources, can directly regulate both SAM steady-state-levels and the one-carbon metabolism, with relevant implication in cancer progression. These recent scientific advancements have provided a deeper understanding of the molecular mechanisms involved in cancer development, and its potential therapeutic regulation.

14.
Cell Death Differ ; 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39406918

RESUMEN

Fructose metabolism has emerged as a significant contributor to cancer cell proliferation, yet the underlying mechanisms and sources of fructose for cancer cells remain incompletely understood. In this study, we demonstrate that cancer cells can convert glucose into fructose through a process called the AKR1B1-mediated polyol pathway. Inhibiting the endogenous production of fructose through AKR1B1 deletion dramatically suppressed glycolysis, resulting in reduced cancer cell migration, inhibited growth, and the induction of apoptosis and cell cycle arrest. Conversely, the acceleration of endogenous fructose through AKR1B1 overexpression has been shown to significantly enhance cancer cell proliferation and migration with increased S cell cycle progression. Our findings highlight the crucial role of endogenous fructose in cancer cell malignancy and support the need for further investigation into AKR1B1 as a potential cancer therapeutic target.

15.
Cell Death Differ ; 31(5): 558-573, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38570607

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is a deadly malignancy with notable metabolic reprogramming, yet the pivotal metabolic feature driving ESCC progression remains elusive. Here, we show that methionine cycle exhibits robust activation in ESCC and is reversely associated with patient survival. ESCC cells readily harness exogenous methionine to generate S-adenosyl-methionine (SAM), thus promoting cell proliferation. Mechanistically, methionine augments METTL3-mediated RNA m6A methylation through SAM and revises gene expression. Integrative omics analysis highlights the potent influence of methionine/SAM on NR4A2 expression in a tumor-specific manner, mediated by the IGF2BP2-dependent stabilization of methylated NR4A2 mRNA. We demonstrate that NR4A2 facilitates ESCC growth and negatively impacts patient survival. We further identify celecoxib as an effective inhibitor of NR4A2, offering promise as a new anti-ESCC agent. In summary, our findings underscore the active methionine cycle as a critical metabolic characteristic in ESCC, and pinpoint NR4A2 as a novel methionine-responsive oncogene, thereby presenting a compelling target potentially superior to methionine restriction.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Metionina , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Animales , Humanos , Ratones , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/genética , Regulación Neoplásica de la Expresión Génica , Metionina/metabolismo , Ratones Desnudos , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Oncogenes
16.
J Proteome Res ; 12(10): 4393-401, 2013 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-23998518

RESUMEN

Acute myeloid leukemia (AML) is a life-threatening hematological disease. Novel diagnostic and prognostic markers will be essential for new therapeutics and for significantly improving the disease prognosis. To characterize the metabolic features associated with AML and search for potential diagnostic and prognostic methods, here we analyzed the phenotypic characteristics of serum metabolite composition (metabonome) in a cohort of 183 patients with de novo acute myeloid leukemia together with 232 age- and gender-matched healthy controls using (1)H NMR spectroscopy in conjunction with multivariate data analysis. We observed significant serum metabonomic differences between AML patients and healthy controls and between AML patients with favorable and intermediate cytogenetic risks. Such differences were highlighted by systems differentiations in multiple metabolic pathways including glycolysis/gluconeogenesis, TCA cycle, biosynthesis of proteins and lipoproteins, and metabolism of fatty acids and cell membrane components, especially choline and its phosphorylated derivatives. This demonstrated the NMR-based metabonomics as a rapid and less invasive method for potential AML diagnosis and prognosis. The serum metabolic phenotypes observed here indicated that integration of metabonomics with other techniques will be useful for better understanding the biochemistry of pathogenesis and progression of leukemia.


Asunto(s)
Biomarcadores de Tumor/sangre , Leucemia Mieloide Aguda/sangre , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Femenino , Humanos , Leucemia Mieloide Aguda/diagnóstico , Masculino , Redes y Vías Metabólicas , Metaboloma , Metabolómica , Persona de Mediana Edad , Análisis Multivariante , Pronóstico , Adulto Joven
17.
Basic Clin Pharmacol Toxicol ; 132(3): 242-252, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36482064

RESUMEN

Bone tissue is a common metastatic site of lung cancer, and bone metastasis is characterized by abnormal differentiation and malfunction of osteoclast, and the roles of exosomes derived from lung cancer have attracted much attention. In our study, we found that the level of HOTAIR expression in A549 and H1299 exosomes was higher than those of normal lung fibrocytes. Overexpression of HOTAIR in A549 and H1299 exosomes promoted osteoclast differentiation. Furthermore, A549-Exos and H1299-Exos targeted bone tissues, and bone formation was significantly inhibited in vivo. Mechanistically, exosomal lncRNA HOTAIR promoted bone resorption by targeting TGF-ß/PTHrP/RANKL pathway.


Asunto(s)
Osteoclastos , ARN Largo no Codificante , Humanos , Diferenciación Celular/genética , Exosomas/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Osteoclastos/metabolismo , Proteína Relacionada con la Hormona Paratiroidea/metabolismo , Ligando RANK/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
18.
J Nutr Biochem ; 121: 109434, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37661068

RESUMEN

Excessive fructose intake is associated with the rising prevalence of nonalcoholic fatty liver disease (NAFLD). The gut microbiome (GM) and bile acids (BAs) are involved in the pathogenesis of NAFLD, but the impact of fructose on their cross-talk is unclear. In this study, adult male C57BL/6J mice were fed a normal diet with tap water (ND) or with 4% fructose in the drinking water (Fru), 60% high-fat diet with tap water (HF) or with 4% fructose solution (HFF) for 12 weeks. Targeted BA analysis was performed in five anatomical sites including the liver, ileum contents, portal serum, cecum contents, and feces. Metagenomic sequencing was performed to explore gut dysbiosis. Within 12 weeks, the 4% fructose diet could initially stimulate gut dysbiosis and BA upregulation in the ileum, portal serum, and cecum when the intestinal and hepatic transport system remained stable without hepatic lipid accumulation. However, the chronic consumption of fructose promoted HF-induced NAFLD, with significantly increased body weight, impaired glucose tolerance, and advanced liver steatosis. BA transporters were inhibited in HFF, causing the block of internal BA circulation and increased BA secretion via cecum contents and feces. Notably, lithocholic acid (LCA) and its taurine conjugates were elevated within the enterohepatic circulation. Meanwhile, the Clostridium species were significantly altered in both Fru and HFF groups and were closely associated with fructose and BA metabolism. In summary, excessive fructose caused gut dysbiosis and BA alterations, promoting HF-induced NAFLD. The crosstalk between Clostridium sp. and LCA species were potential targets in fructose-mediated NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Masculino , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ácidos y Sales Biliares/metabolismo , Fructosa/efectos adversos , Fructosa/metabolismo , Disbiosis/metabolismo , Ratones Endogámicos C57BL , Hígado/metabolismo , Dieta Alta en Grasa/efectos adversos , Clostridium , Agua/metabolismo
19.
Phytomedicine ; 113: 154732, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36933457

RESUMEN

BACKGROUND: New therapeutic approaches are required to improve the outcomes of lung cancer (LC), a leading cause of cancer-related deaths worldwide. Chinese herbal medicine formulae widely used in China provide a unique opportunity for improving LC treatment, and the Shuang-Huang-Sheng-Bai (SHSB) formula is a typical example. However, the underlying mechanisms of action remains unclear. PURPOSE: This study aimed to confirm the efficacy of SHSB against lung adenocarcinoma (LUAD), which is a major histological type of LC, unveil the downstream targets of this formula, and assess the clinical relevance and biological roles of the newly identified target. METHODS: An experimental metastasis mouse model and a subcutaneous xenograft mouse model were used to evaluate the anti-cancer activity of SHSB. Multi-omics profiling of subcutaneous tumors and metabolomic profiling of sera were performed to identify downstream targets, especially the metabolic targets of SHSB. A clinical trial was conducted to verify the newly identified metabolic targets in patients. Next, the metabolites and enzymes engaged in the metabolic pathway targeted by SHSB were measured in clinical samples. Finally, routine molecular experiments were performed to decipher the biological functions of the metabolic pathways targeted by SHSB. RESULTS: Oral SHSB administration showed overt anti-LUAD efficacy as revealed by the extended overall survival of the metastasis model and impaired growth of implanted tumors in the subcutaneous xenograft model. Mechanistically, SHSB administration altered protein expression in the post-transcriptional layer and modified the metabolome of LUAD xenografts. Integrative analysis demonstrated that SHSB markedly inhibited acetyl-CoA synthesis in tumors by post-transcriptionally downregulating ATP-citrate lyase (ACLY). Consistently, our clinical trial showed that oral SHSB administration declined serum acetyl-CoA levels of patients with LC. Moreover, acetyl-CoA synthesis and ACLY expression were both augmented in clinical LUAD tissues of patients, and high intratumoral ACLY expression predicted a detrimental prognosis. Finally, we showed that ACLY-mediated acetyl-CoA synthesis is essential for LUAD cell growth by promoting G1/S transition and DNA replication. CONCLUSION: Limited downstream targets of SHSB for LC treatment have been reported in previous hypothesis-driven studies. In this study, we conducted a comprehensive multi-omics investigation and demonstrated that SHSB exerted its anti-LUAD efficacy by actively and post-transcriptionally modulating protein expression and particularly restraining ACLY-mediated acetyl-CoA synthesis.


Asunto(s)
Adenocarcinoma del Pulmón , Medicamentos Herbarios Chinos , Neoplasias Pulmonares , Humanos , Ratones , Animales , ATP Citrato (pro-S)-Liasa/genética , ATP Citrato (pro-S)-Liasa/metabolismo , Acetilcoenzima A/metabolismo , Medicamentos Herbarios Chinos/farmacología , Adenocarcinoma del Pulmón/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico
20.
J Pharm Biomed Anal ; 219: 114934, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-35839582

RESUMEN

Pseudouridine, a C-C glycosidic isomer of uridine, is derived from uridine via isomerization, and pseudouridylation is the most common post-transcriptional modification. Our previous study shows pseudouridine may serve an important role in acute myeloid leukemia (AML). The clinical value of pseudouridine and uridine is hampered by the lack of a quantitative methods with high sensitivity, specificity, and stability. Here, we established a supercritical fluid chromatography-tandem triple quadrupole mass spectrometry (SFC-TQ-MS)-based method to quantitate serum pseudouridine and uridine simultaneously. The procedure involves protein precipitation of sample, extraction with solid phase extraction (SPE) plate, 5-min SFC separation by applying gradient elution on a Acquity UPC2 Torus DIOL column, and analysis by TQ-MS using well-characterized calibration standards. After validation, the method was used to measure pseudouridine and uridine concentrations in 143 serum samples from healthy controls (HCs) and AML patients to evaluate their prognostic potential. The successfully validated assay had a linear range of 5-5000 ng/mL, accuracies between 97 % and 102 %, and intra- and inter-assay imprecision <10 %. Compared to HCs, pseudouridine was raised significantly, while uridine was curtailed severely in patients with AML. With a median concentration of 671.4 ng/mL as the prognostic cut-off value, high level pseudouridine independently predicted poor survival of AML patients. Quantification of serum pseudouridine and uridine by SFC-TQ-MS provides an analytically sensitive and reproducible method for clinical diagnosis, and high concentration of pseudouridine is an independent prognostic factor for patients with AML.


Asunto(s)
Cromatografía con Fluido Supercrítico , Leucemia Mieloide Aguda , Cromatografía con Fluido Supercrítico/métodos , Humanos , Leucemia Mieloide Aguda/diagnóstico , Seudouridina , Espectrometría de Masas en Tándem/métodos , Uridina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA