Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(22): 6761-6766, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38775803

RESUMEN

Orbital angular momentum (OAM) multiplexed holograms have attracted a great deal of attention recently due to their physically unbounded set of orthogonal helical modes. However, preserving the OAM property in each pixel hinders fine sampling of the target image in principle and requires a fundamental filtering aperture array in the detector plane. Here, we demonstrate the concept of metasurface-based vectorial holography with cylindrical vector beams (CVBs), whose unlimited polarization orders and unique polarization distributions can be used to boost information storage capacity. Although CVBs are composed of OAM modes, the holographic images do not preserve the OAM modes in our design, enabling fine sampling of the target image in a quasi-continuous way like traditional computer-generated holograms. Moreover, the images can be directly observed by passing them through a polarizer without the need for a fundamental mode filter array. We anticipate that our method may pave the way for high-capacity holographic devices.

2.
Nano Lett ; 24(2): 708-714, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38165767

RESUMEN

Angle-dependent next-generation displays have potential applications in 3D stereoscopic and head-mounted displays, image combiners, and encryption for augmented reality (AR) and security. Metasurfaces enable such exceptional functionalities with groundbreaking achievements in efficient displays over the past decades. However, limitations in angular dispersion control make them unfit for numerous nanophotonic applications. Here, we propose a spin-selective angle-dependent all-dielectric metasurface with a unique design strategy to manifest distinct phase information at different incident angles of light. As a proof of concept, the phase masks of two images are encoded into the metasurface and projected at the desired focal plane under different angles of left circularly polarized (LCP) light. Specifically, the proposed multifunctional metasurface generates two distinct holographic images under LCP illumination at angles of +35 and -35°. The presented holographic displays may provide a feasible route toward multifunctional meta-devices for potential AR displays, encrypted imaging, and information storage applications.

3.
Biochem Biophys Res Commun ; 710: 149876, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38579537

RESUMEN

1,2,4-Butanetriol serves as a precursor in the manufacture of diverse pharmaceuticals and the energetic plasticizer 1,2,4-butanetriol trinitrate. The study involved further modifications to an engineered Candida tropicalis strain, aimed at improving the production efficiency of 1,2,4-butanetriol. Faced with the issue of xylonate accumulation due to the low activity of heterologous xylonate dehydratase, we modulated iron metabolism at the transcriptional level to boost intracellular iron ion availability, thus enhancing the enzyme activity by 2.2-fold. Addressing the NADPH shortfall encountered during 1,2,4-butanetriol biosynthesis, we overexpressed pivotal genes in the NADPH regeneration pathway, achieving a 1,2,4-butanetriol yield of 3.2 g/L. The introduction of calcium carbonate to maintain pH balance led to an increased yield of 4 g/L, marking a 111% improvement over the baseline strain. Finally, the use of corncob hydrolysate as a substrate culminated in 1,2,4-butanetriol production of 3.42 g/L, thereby identifying a novel host for the conversion of corncob hydrolysate to 1,2,4-butanetriol.


Asunto(s)
Butanoles , Candida tropicalis , Escherichia coli , Escherichia coli/metabolismo , Candida tropicalis/genética , Candida tropicalis/metabolismo , Ingeniería Metabólica , Hierro/metabolismo , Xilosa/metabolismo
4.
Biochem Biophys Res Commun ; 712-713: 149942, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38642492

RESUMEN

Metabolic engineering reconfigures cellular networks to produce value-added compounds from renewable substrates efficiently. However, identifying strains with desired phenotypes from large libraries through rational or random mutagenesis remains challenging. To overcome this bottleneck, an effective high-throughput screening (HTS) method must be developed to detect and analyze target candidates rapidly. Salidroside is an aromatic compound with broad applications in food, healthcare, medicine, and daily chemicals. However, there currently needs to be HTS methods available to monitor salidroside levels or to screen enzyme variants and strains for high-yield salidroside biosynthesis, which severely limits the development of microbial cell factories capable of efficiently producing salidroside on an industrial scale. This study developed a gene-encoded whole-cell biosensor that is specifically responsive to salidroside. The biosensor was created by screening a site-saturated mutagenic library of uric acid response regulatory protein binding bags. This work demonstrates the feasibility of monitoring metabolic flux with whole-cell biosensors for critical metabolites. It provides a promising tool for building salidroside high-yielding strains for high-throughput screening and metabolic regulation to meet industrial needs.


Asunto(s)
Técnicas Biosensibles , Glucósidos , Ensayos Analíticos de Alto Rendimiento , Ingeniería Metabólica , Fenoles , Fenoles/metabolismo , Técnicas Biosensibles/métodos , Glucósidos/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Ingeniería Metabólica/métodos , Escherichia coli/genética , Escherichia coli/metabolismo
5.
Biochem Biophys Res Commun ; 663: 16-24, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37116393

RESUMEN

Hydroxytyrosol (HT) is an olive-derived phenolic phytochemical that has gained increasing commercial interest due to its natural antioxidant properties. It is widely used in the field of food supplement and medicine. It is reported that 4-hydroxyphenylacetate 3-hydroxylase (EcHpaB) and flavin reductase (EcHpaC) from E. coli BL21(DE3) can successfully express and catalyze the production of HT from tyrosol. In this study, the tyrosol production strain YMG5∗R as chassis cells, and a random mutant library of EcHpaB was established using error-prone PCR to improve the ability of EcHpaB to convert tyrosol to HT. Finally, a highly efficient HT synthetic mutant strainYMG5∗R-HpaBTLEHC with high transformation efficiency was screened by directed evolution. The YMG5∗R-HpaBTLEHC strain efficiently converted 50 mM tyrosol, with a yield of hydroxytyrosol reaching 48.2 mM (7.43 g/L) and a space-time yield reached 0.62 g/L·h. Overall, our study demonstrates the successful development of a highly efficient synthetic enzyme mutant for the production of HT, which has the potential to significantly improve the commercial viability of this natural antioxidant.


Asunto(s)
Escherichia coli , Alcohol Feniletílico , Antioxidantes , Oxigenasas de Función Mixta
6.
Microb Cell Fact ; 22(1): 17, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36694175

RESUMEN

BACKGROUND: The tobacco leaf-derived cembratriene-ol exhibits anti-insect effects, but its content in plants is scarce. Cembratriene-ol is difficult and inefficiently chemically synthesised due to its complex structure. Moreover, the titer of reported recombinant hosts producing cembratriene-ol was low and cannot be applied to industrial production. RESULTS: In this study, Pantoea ananatis geranylgeranyl diphosphate synthase (CrtE) and Nicotiana tabacum cembratriene-ol synthase (CBTS) were heterologously expressed to synthsize the cembratriene-ol in Escherichia coli. Overexpression of cbts*, the 1-deoxy-D-xylulose 5-phosphate synthase gene dxs, and isopentenyl diphosphate isomerase gene idi promoted the production of cembratriene-ol. The cembratriene-ol titer was 1.53-folds higher than that of E. coli Z17 due to the systematic regulation of ggpps, cbts*, dxs, and idi expression. The production of cembratriene-ol was boosted via the overexpression of genes ispA, ispD, and ispF. The production level of cembratriene-ol in the optimal medium at 72 h was 8.55-folds higher than that before fermentation optimisation. The cembratriene-ol titer in the 15-L fermenter reached 371.2 mg L- 1, which was the highest titer reported. CONCLUSION: In this study, the production of cembratriene-ol in E. coli was significantly enhanced via systematic optimization. It was suggested that the recombinant E. coli producing cembratriene-ol constructed in this study has potential for industrial production and applications.


Asunto(s)
Diterpenos , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Diterpenos/metabolismo , Farnesiltransferasa/metabolismo
7.
Phys Chem Chem Phys ; 25(33): 22319-22324, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37578284

RESUMEN

The combination of a flexible device and novel electromagnetic resonances offers new dimensions to manipulate electromagnetic waves and promises new device functionalities. In this study, we experimentally demonstrate a flexible metasurface that can support the bound state in the continuum (BIC) in the terahertz regime. The metasurface consists of toroidal dipole resonant units on top of the flexible polyimide substrate, which can support a terahertz Friedrich-Wintgen BIC resonance, and the resonance characteristics can be tuned by changing the parameters of the coupling unit among two resonant modes. The BIC resonances under different bending conditions are analyzed and compared, showing decent mechanical robustness. The sensing application is demonstrated by combining Fetal Bovine Serum with the flexible BIC metasurface. The measured minimum detectable concentration is 0.007 mg mL-1. Benefiting from the mechanical flexibility and BIC resonance characteristics, our approach can effectively manipulate terahertz waves and have potential applications in the realization of multifunctional and flexible photonic devices.

8.
Appl Microbiol Biotechnol ; 107(17): 5317-5328, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37428188

RESUMEN

Glucoside compounds are widely found in nature and have garnered significant attention in the medical, cosmetics, and food industries due to their diverse pharmaceutical properties, biological activities, and stable application characteristics. Glycosides are mainly obtained by direct extraction from plants, chemical synthesis, and enzymatic synthesis. Given the challenges associated with plant extraction, such as low conversion rates and the potential for environmental pollution with chemical synthesis, our review focuses on enzymatic synthesis. Here, we reviewed the enzymatic synthesis methods of 2-O-α-D-glucopyranosyl-L-ascorbic acid (AA-2G), 2-O-α-D-glucosyl glycerol (α-GG), arbutin and α-glucosyl hesperidin (Hsp-G), and other glucoside compounds. The types of enzymes selected in the synthesis process are comprehensively analyzed and summarized, as well as a series of enzyme transformation strategies adopted to improve the synthetic yield. KEY POINTS: • Glycosyl compounds have applications in the biomedical and food industries. • Enzymatic synthesis converts substrates into products using enzymes as catalysts. • Substrate bias and specificity are key to improving substrate conversion.


Asunto(s)
Ácido Ascórbico , Glucósidos , Arbutina
9.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37894990

RESUMEN

The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (CRISPR-Cas) system has undergone substantial and transformative progress. Simultaneously, a spectrum of derivative technologies has emerged, spanning both conventional and non-conventional yeast strains. Non-conventional yeasts, distinguished by their robust metabolic pathways, formidable resilience against diverse stressors, and distinctive regulatory mechanisms, have emerged as a highly promising alternative for diverse industrial applications. This comprehensive review serves to encapsulate the prevailing gene editing methodologies and their associated applications within the traditional industrial microorganism, Saccharomyces cerevisiae. Additionally, it delineates the current panorama of non-conventional yeast strains, accentuating their latent potential in the realm of industrial and biotechnological utilization. Within this discourse, we also contemplate the potential value these tools offer alongside the attendant challenges they pose.


Asunto(s)
Sistemas CRISPR-Cas , Saccharomyces cerevisiae , Sistemas CRISPR-Cas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Edición Génica/métodos , Biotecnología , Bioingeniería
10.
Int J Mol Sci ; 24(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37569764

RESUMEN

Cyanobacterial harmful algal blooms (CyanoHABs) pose significant threats to human health and natural ecosystems worldwide, primarily caused by water eutrophication, increased surface water temperature, and co-occurring microorganisms. Urgent action is needed to develop an eco-friendly solution to effectively curb the proliferation of CyanoHABs. Sophorolipids (SLs) are fully biodegradable biosurfactants synthesized by Starmerella bombicola. They can be classified into lactone and acid types. The lactone type displays strong antimicrobial activity, while the acid type exhibits good solubility, which make them ideal agents for mitigating CyanoHABs. Nevertheless, the broad utilization of SLs are hindered by their expensive production costs and the absence of effective genetic editing tools in the native host. In this study, we constructed recombinant strains capable of producing either acidic or lactonic SLs using the CRISPR-Cas9 gene editing system. The yields of acidic and lactonic SLs reached 53.64 g/L and 45.32 g/L in a shaking flask, respectively. In a 5 L fermenter, acidic SLs reached 129.7 g/L using low-cost glucose and rapeseed oil as substrates. The addition of 5 mg/L lactonic SLs effectively degraded cyanobacteria within 30 min, and a ratio of 8.25:1.75 of lactonic to acidic SLs showed the highest degradation efficiency. This study offers a safe and promising solution for CyanoHABs treatment.


Asunto(s)
Cianobacterias , Floraciones de Algas Nocivas , Humanos , Ecosistema , Cianobacterias/genética , Lactonas
11.
Biochemistry ; 61(24): 2940-2947, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-35673797

RESUMEN

An activator protein and a metal ion are two factors known to be indispensable for the maturation of nitrile hydratase (NHase). Here, the third key factor, adenosine triphosphate (ATP), was identified to play an important role in the activation of Co-type NHase. Free phosphate measurements revealed that the Co-type activator protein can hydrolyze ATP/GTP with appreciable performance and that such catalytic performance is related to NHase activity. Computational analysis and site-directed mutagenesis identified several potential hot spot residues involved in the binding of ATP to Co-type activator protein, and an E60A/W61A/D62A/I139A/T141A combinatorial variant reduced the ATPase activity to 18% of its original level. Further NHase activation studies using the combinatorial variant demonstrated that although the ATPase activity of the Co-type activator protein correlated with NHase activity, a low ATP concentration of 0.5 mmol/L was optimal for NHase activation, with higher ATP concentrations potentially inhibiting NHase activity.


Asunto(s)
Cobalto , Hidroliasas , Cobalto/química , Hidroliasas/química , Secuencia de Bases , Adenosina Trifosfatasas/metabolismo
12.
Opt Express ; 30(5): 7137-7146, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35299483

RESUMEN

Computer-generated holography typically generates terahertz (THz) holographic images with a pixel size larger than wavelength. We propose a multi-foci metalens model to reconstruct THz holographic images with subwavelength resolution. The designed devices are realized based on dielectric metasurfaces consisting of silicon micropillars with spatially variant orientations. By exploiting quasi-continuous profile of focal points as the pixels of a holographic image, a metalens can reconstruct a high-resolution target image on its focal plane. The effects of size and pitch of each sub-diffraction focal point on imaging quality and pixel resolution are discussed. The intensity distribution at each focal point indicates that the reconstructed images have subwavelength resolution. In comparison with conventional hologram designs, this design method can be used to reconstruct THz holographic images with subwavelength resolution, which have potential applications in THz communication, information security and anti-counterfeiting.

13.
J Ind Microbiol Biotechnol ; 49(4)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35648451

RESUMEN

D, D-carboxypeptidase DacA plays an important role in the synthesis and stabilization of Escherichia coli cell wall peptidoglycan. The production level of extracellular recombinant proteins in E. coli can be enhanced by high D, D-carboxypeptidase activity. Construction of expression systems under optimal promoters is one of the main strategies to realize high protein production in E. coli. In this study, the promoter PdacA-3 from DacA on the genome of E. coli BL21 (DE3) was verified to be efficient for recombinant green fluorescent protein using the plasmid mutant pET28a-PdacA with PdacA-3. Meanwhile, the promoter PdacA-3 was engineered to increase the production level of proteins via inserting one or two Shine-Dalgarno (SD) sequences between the promoter PdacA-3 and the target genes. The expression level of dacA on the genome was increased by the improved transcription of the engineered promoters (especially after inserting one additional SD sequence). The engineered promoters increased cell membrane permeabilities to significantly enhance the secretion production of extracellular recombinant proteins in E. coli. Among them, the extracellular recombinant amylase activities in E. coli BL21::1SD-pET28a-amyK and E. coli BL21::2SD-pET28a-amyK were increased by 2.0- and 1.6-fold that of the control (E. coli BL21-pET28a-amyK), respectively. Promoter engineering also affected the morphology and growth of the E. coli mutants. It was indicated that the engineered promoters enhanced the expression of dacA on the genome to disturb the synthesis and structural stability of cell wall peptidoglycans.


Asunto(s)
Escherichia coli , Peptidoglicano , Carboxipeptidasas , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Peptidoglicano/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
Nano Lett ; 21(5): 2081-2087, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33630607

RESUMEN

Three-dimensional (3D) light fields with spatially inhomogeneous polarization and intensity distributions play an increasingly important role in photonics due to their peculiar optical features and extra degrees of freedom for carrying information. However, it is very challenging to simultaneously control the intensity profile and polarization profile in an arbitrary manner. Here we experimentally demonstrate a metalens that can focus light into an arbitrarily shaped focal curve with a predefined polarization distribution. The efficacy of this approach is exemplified through the demonstration of focused curves in 3D space ranging from simple shapes such as a circle to topologically nontrivial objects such as a 3D knot with controlled local polarization states. This powerful control of the light field would be technically challenging with their conventional counterparts. Our demonstration may find applications in beam engineering and integration optics.

15.
Microb Cell Fact ; 20(1): 105, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34034730

RESUMEN

BACKGROUND: Commercial xylose purification produces xylose mother liquor (XML) as a major byproduct, which has become an inexpensive and abundant carbon source. A portion of this XML has been used to produce low-value-added products such as caramel but the remainder often ends up as an organic pollutant. This has become an issue of industrial concern. In this study, a uracil-deficient Candida tropicalis strain was engineered to efficiently convert XML to the commercially useful product xylitol. RESULTS: The xylitol dehydrogenase gene was deleted to block the conversion of xylitol to xylulose. Then, an NADPH regeneration system was added through heterologous expression of the Yarrowia lipolytica genes encoding 6-phosphate-gluconic acid dehydrogenase and 6-phosphate-glucose dehydrogenase. After process optimization, the engineered strain, C. tropicalis XZX-B4ZG, produced 97.10 g L- 1 xylitol in 120 h from 300 g L- 1 XML in a 5-L fermenter. The xylitol production rate was 0.82 g L- 1 h- 1 and the conversion rate was 92.40 %. CONCLUSIONS: In conclusion, this study performed a combination of metabolic engineering and process optimizing in C. tropicalis to enhance xylitol production from XML. The use of C. tropicalis XZX-B4ZG, therefore, provided a convenient method to transform the industrial by-product XML into the useful material xylitol.


Asunto(s)
Candida tropicalis/genética , Candida tropicalis/metabolismo , D-Xilulosa Reductasa/genética , Ingeniería Metabólica , Xilitol/biosíntesis , Xilosa/metabolismo , Candida tropicalis/enzimología , D-Xilulosa Reductasa/metabolismo , Fermentación , Glucosa 1-Deshidrogenasa , Glucosafosfato Deshidrogenasa/metabolismo , Microbiología Industrial
16.
Appl Microbiol Biotechnol ; 105(18): 6607-6626, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34468804

RESUMEN

Bacillus subtilis is a well-characterized Gram-positive bacterium and a valuable host for recombinant protein production because of its efficient secretion ability, high yield, and non-toxicity. Here, we comprehensively review the recent studies on recombinant protein production in B. subtilis to update and supplement other previous reviews. We have focused on several aspects, including optimization of B. subtilis strains, enhancement and regulation of expression, improvement of secretion level, surface display of proteins, and fermentation optimization. Among them, optimization of B. subtilis strains mainly involves undirected chemical/physical mutagenesis and selection and genetic manipulation; enhancement and regulation of expression comprises autonomous plasmid and integrated expression, promoter regulation and engineering, and fine-tuning gene expression based on proteases and molecular chaperones; improvement of secretion level predominantly involves secretion pathway and signal peptide screening and optimization; surface display of proteins includes surface display of proteins on spores or vegetative cells; and fermentation optimization incorporates medium optimization, process condition optimization, and feeding strategy optimization. Furthermore, we propose some novel methods and future challenges for recombinant protein production in B. subtilis.Key points• A comprehensive review on recombinant protein production in Bacillus subtilis.• Novel techniques facilitate recombinant protein expression and secretion.• Surface display of proteins has significant potential for different applications.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Chaperonas Moleculares , Señales de Clasificación de Proteína , Proteínas Recombinantes/genética
17.
Appl Microbiol Biotechnol ; 105(19): 7309-7319, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34542685

RESUMEN

Sucrose phosphorylase (SPase) can specifically catalyze transglycosylation reactions and can be used to enzymatically synthesize α-D-glycosides. However, the low thermostability of SPase has been a bottleneck for its industrial application. In this study, a SPase gene from Leuconostoc mesenteroides ATCC 12,291 (LmSPase) was synthesized with optimized codons and overexpressed successfully in Escherichia coli. A semi-rational design strategy that combined the FireProt (a web server designing thermostable proteins), structure-function analysis, and molecular dynamic simulations was used to improve the thermostability of LmSPase. Finally, one single-point mutation T219L and a combination mutation I31F/T219L/T263L/S360A (Mut4) with improved thermostability were obtained. The half-lives at 50 °C of T219L and Mut4 both increased approximately two-fold compared to that of wild-type LmSPase (WT). Furthermore, the two variants T219L and Mut4 were used to produce α-D-glucosylglycerol (αGG) from sucrose and glycerol by incubating with 40 U/mL crude extracts at 37 °C for 60 h and achieved the product concentration of 193.2 ± 12.9 g/L and 195.8 ± 13.1 g/L, respectively, which were approximately 1.3-fold higher than that of WT (150.4 ± 10.0 g/L). This study provides an effective strategy for improving the thermostability of an industrial enzyme. KEY POINTS: • Predicted potential hotspot residues directing the thermostability of LmSPase by semi-rational design • Screened two positive variants with higher thermostability and higher activity • Synthesized α-D-glucosylglycerol to a high level by two screened positive variants.


Asunto(s)
Glucósidos/metabolismo , Glucosiltransferasas/metabolismo , Estabilidad de Enzimas
18.
Opt Lett ; 45(13): 3506-3509, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32630883

RESUMEN

We propose a reflective terahertz (THz) metalens with four focal points for polarization detection of THz beams. The metalens is composed of Z-shaped resonators with spatially variant orientations, a reflective gold layer, and a dielectric spacer between them. The polarization states of the focal points include left circular polarization, right circular polarization, an incident polarization state, and a polarization state whose major axis is rotated π/4 in comparison with that of the incident polarization. The handedness, ellipticity, and major axis of the polarization state can be determined based on the light intensities of the focal points. The uniqueness of the designed device renders this technique very attractive for applications in compact THz polarization detection and information processing.

19.
Biotechnol Bioeng ; 117(2): 531-542, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31654413

RESUMEN

Genetic manipulation is among the most important tools for synthetic biology; however, modifying multiple genes is extremely time-consuming and can sometimes be impossible when dealing with gene families. Here, we present a clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated protein 9 (Cas9) system for use in the diploid yeast Candida tropicalis that is vastly superior to traditional techniques. This system enables the rapid and reliable introduction of multiple genetic deletions or mutations, as well as a stable expression using an integrated CRISPR-Cas9 cassette or a transient CRISPR-Cas9 cassette, together with a short donor DNA. We further show that the system can be used to promote the in vivo assembly of multiple DNA fragments and their stable integration into a target locus (or loci) in C. tropicalis. Based on this system, we present a platform for the biosynthesis of ß-carotene and its derivatives. These results enable the practical application of C. tropicalis and the application of the system to other organisms.


Asunto(s)
Sistemas CRISPR-Cas/genética , Candida tropicalis/genética , Edición Génica/métodos , Genoma Fúngico/genética , Candida tropicalis/metabolismo , ADN de Hongos/genética , Regiones Promotoras Genéticas/genética
20.
Appl Microbiol Biotechnol ; 104(7): 2973-2985, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32043188

RESUMEN

In the present work, we used systematic engineering at transport and transcription levels to significantly enhance alkaline α-amylase production in Bacillus subtilis 168M. Signal peptide YwbN' proved to be optimal. Alkaline α-amylase production was elevated by deleting a putative peptide segment of YwbN'. Insertion of arginine (R) between residues 5 and 6 of YwbN'∆p further increased the protein yield. Enhancing positive charges at sites 4 and 10 and decreasing the hydrophobicity of the H-region of YwbN'∆p were critical for improving alkaline α-amylase production in B. subtilis 168M. PHpaII was the optimal promoter, and deleting - 27T or - 31A from PHpaII enhanced the transcription of the target gene. Using a single-pulse feeding-based fed-batch system, alkaline α-amylase activity of B. subtilis 168M P∆-27T was increased by 250.6-fold, compared with B. subtilis 168M A1.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/metabolismo , alfa-Amilasas/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Técnicas de Cultivo Celular por Lotes , Regiones Promotoras Genéticas/genética , Ingeniería de Proteínas , Señales de Clasificación de Proteína/genética , Transporte de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transcripción Genética , alfa-Amilasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA