Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Clin Genet ; 105(4): 397-405, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38173219

RESUMEN

CCDC88C gene, which encodes coiled-coil domain containing 88C, is essential for cell communication during neural development. Variants in the CCDC88C caused congenital hydrocephalus, some accompanied by seizures. In patients with epilepsy without acquired etiologies, we performed whole-exome sequencing (trio-based). Two de novo and two biallelic CCDC88C variants were identified in four cases with focal (partial) epilepsy. These variants did not present or had low frequencies in the gnomAD populations and were predicted to be damaging by multiple computational algorithms. Patients with de novo variants presented with adult-onset epilepsy, whereas patients with biallelic variants displayed infant-onset epilepsy. They all responded well to anti-seizure medications and were seizure-free. Further analysis showed that de novo variants were located at crucial domains, whereas one paired biallelic variants were located outside the crucial domains, and the other paired variant had a non-classical splicing and a variant located at crucial domain, suggesting a sub-molecular effect. CCDC88C variants associated with congenital hydrocephalus were all truncated, whereas epilepsy-associated variants were mainly missense, the proportion of which was significantly higher than that of congenital hydrocephalus-associated variants. CCDC88C is potentially associated with focal epilepsy with favorable outcome. The underlying mechanisms of phenotypic variation may correlation between genotype and phenotype.


Asunto(s)
Epilepsias Parciales , Epilepsia , Hidrocefalia , Lactante , Adulto , Humanos , Epilepsias Parciales/genética , Epilepsia/genética , Hidrocefalia/genética , Genotipo , Estudios de Asociación Genética , Proteínas de Microfilamentos/genética , Péptidos y Proteínas de Señalización Intracelular/genética
2.
Nano Lett ; 23(8): 3614-3622, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37017682

RESUMEN

Surface modification is a promising method to change the surface properties of nanomaterials, but it is limited in enhancing their intrinsic redox nature. In this work, a "filter amplifier" strategy is proposed for the first time to reverse the intrinsic redox nature of materials. This is demonstrated by coating a COF-316 layer with controlled thickness on TiO2 to form core-sheath nanowire arrays. This unique structure forms a Z-scheme heterojunction to function as "a filter amplifier" which can conceal the intrinsic oxidative sites and increase the extrinsic reductive sites. Consequently, the selective response of TiO2 is dramatically reversed from reductive ethanol and methanol to oxidative NO2. Moreover, TiO2@COF-316 provides remarkably improved sensitivity, response, and recovery speed, as well as unusual anti-humidity properties as compared with TiO2. This work not only provides a new strategy to rationally modulate the surface chemistry properties of nanomaterials but also opens an avenue to design high-performance electronic devices with a Z-scheme heterojunction.

3.
BMC Cancer ; 23(1): 416, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37158833

RESUMEN

BACKGROUND: Pathologic complete response (pCR) following preoperative systemic therapy is associated with improved outcomes after subsequent liver transplant/resection in hepatocellular carcinoma (HCC). However, the relationship between radiographic and histopathological response remains unclear. METHODS: We retrospectively examined patients with initially unresectable HCC who received tyrosine kinase inhibitor (TKI) plus anti-programmed death 1 (PD-1) therapy before undergoing liver resection between March 2019 and September 2021 across 7 hospitals in China. Radiographic response was evaluated using mRECIST. A pCR was defined as no viable tumor cells in resected samples. RESULTS: We included 35 eligible patients, of whom 15 (42.9%) achieved pCR after systemic therapy. After a median follow-up of 13.2 months, tumors recurred in 8 non-pCR and 1 pCR patient. Before resection, there were 6 complete responses, 24 partial responses, 4 stable disease cases, and 1 progressive disease case, per mRECIST. Predicting pCR by radiographic response yielded an area under the receiver operating characteristic curve (AUC) of 0.727 (95% CI: 0.558-0.902), with an optimal cutoff value of 80% reduction in the enhanced area in MRI (called major radiographic response), which had a 66.7% sensitivity, 85.0% specificity, and a 77.1% diagnostic accuracy. When radiographic response was combined with α-fetoprotein response, the AUC was 0.926 (95% CI: 0.785-0.999); the optimal cutoff value was 0.446, which had a 91.7% sensitivity, 84.6%, specificity, and an 88.0% diagnostic accuracy. CONCLUSIONS: In patients with unresectable HCC receiving combined TKI/anti-PD 1 therapy, major radiographic response alone or combined with α-fetoprotein response may predict pCR.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/tratamiento farmacológico , alfa-Fetoproteínas , Estudios Retrospectivos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/tratamiento farmacológico , Recurrencia Local de Neoplasia/diagnóstico por imagen , Inmunoterapia , Inhibidores de Proteínas Quinasas/uso terapéutico
4.
Yi Chuan ; 45(7): 553-567, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37503580

RESUMEN

Developmental and epileptic encephalopathy (DEE) is a clinically and genetically heterogeneous group of age-dependent neurological disorders characterized by onset of refractory seizures in infancy or early childhood and affected individuals with delayed or regressive psychomotor development. With the development of next-generation sequencing technology, especially the application of whole-exome sequencing technology, more and more genes have been found to be associated with DEE.These discoveries provide a basis for the detection of pathogenic genes for DEE in clinical work, and also help to deepen our understanding of the pathogenesis of DEE. In this review, we provide a comprehensive review of the genetic etiology, diagnosis and treatment of DEE, in order to assist clinicians in early identification of relevant gene mutations, thereby expediting disease diagnosis and timely implementation of optimal treatment.


Asunto(s)
Encefalopatías , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Preescolar , Mutación , Encefalopatías/genética
5.
Clin Exp Pharmacol Physiol ; 49(1): 122-133, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34494284

RESUMEN

Previous studies reveal that hydrogen sulphide (H2 S) exerts neuroprotection against neurotoxin-induced Parkinson's disease (PD), but the underlying mechanism remains elusive. The present study was aimed to investigate whether H2 S inhibits neuronal apoptosis of substantia nigra with the involvement of autophagy via promoting leptin signalling in 6-hydroxydopamine (6-OHDA)-induced PD rats. In this study, neuronal apoptosis was analysed by TUNEL staining, the activity of caspase-3 was measured by Caspase-3 fluorometric assay kit, the expressions of Bax, Bcl-2, Beclin-1, LC3II, P62 and leptin were determined by Western blot analysis, and the numbers of autophagosomes and autolysosomes were assessed by transmission electron microscopy. Results showed that NaHS, a donor of exogenous H2 S, mitigates 6-OHDA-induced the increases in the numbers of TUNEL-positive cells, the activity of caspase-3 and the expression of Bax, and attenuates 6-OHDA-induced a decrease in the expression of Bcl-2 in substantia nigra of rats. In addition, 6-OHDA enhanced the expressions of Beclin-1, LC3-II and P62, increased the number of autophagosomes, and decreased the number of autolysosomes in the substantia nigra, which were also blocked by administration of NaHS. Furthermore, NaHS reversed 6-OHDA-induced the down-regulation of leptin expression in the substantia nigra, and treatment with leptin-OBR, a blocking antibody of leptin receptor, attenuated the inhibition of NaHS on neuronal apoptosis and the improvement of NaHS on the blocked autophagic flux in substantia nigra of 6-OHDA-treated rats. Taken together, these results demonstrated that H2 S attenuates neuronal apoptosis of substantia nigra depending on restoring impaired autophagic flux through up-regulating leptin signalling in PD.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Sulfuro de Hidrógeno/uso terapéutico , Leptina/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Trastornos Parkinsonianos/tratamiento farmacológico , Sustancia Negra/efectos de los fármacos , Animales , Autofagosomas/efectos de los fármacos , Sulfuro de Hidrógeno/farmacología , Masculino , Microscopía Electrónica de Transmisión , Fármacos Neuroprotectores/farmacología , Oxidopamina/farmacología , Trastornos Parkinsonianos/patología , Ratas , Ratas Sprague-Dawley , Sustancia Negra/metabolismo , Sustancia Negra/patología
6.
Aesthetic Plast Surg ; 46(2): 744-751, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34462802

RESUMEN

BACKGROUND: Blepharoptosis is defined as an abnormally low-positioned upper eyelid margin in the primary gaze position, which results in cosmetic discomfort and functional visual dysfunction. Recurrence is one of the common complications after ptosis correction and requires further revision. Conjoint fascial sheath (CFS) suspension has become increasingly popular for ptosis. In this article, we described our experience of CFS suspension in the treatment of recurrent blepharoptosis and evaluated the postoperative outcomes so as to guide the clinical application of CFS suspension. METHODS: Thirty-eight patients (48 eyelids) who had recurrent blepharoptosis and received CFS suspension were included in this study. Before the surgery, the degree of ptosis and levator function were assessed. The postoperative evaluation consisted of the correction effect, eyelid symmetry, protective closure function of eyelid, and surgical complications. RESULTS: At the final follow-up, 46 eyelids (95.8%) showed an ideal correction, of which 24 eyelids (50%) showed sufficient correction and 22 eyelids (45.8%) showed normal correction. The remaining 2 eyelids (4.2%) showed under-correction. Among all 38 patients, 26 patients (68.4%) achieved good symmetry, and 10 patients (26.3%) achieved fair symmetry, while only 2 patients (5.3%) showed poor symmetry. Recovery time of eyelid protective closure function was 3.9 ± 1.04 months (range, 2.5-6 months). There were no complications except residual lagophthalmos (9 eyelids) residual conjunctival prolapse (10 eyelids). CONCLUSION: CFS suspension is an effective method for the correction of recurrent blepharoptosis due to its sufficient correction effect, recovery of eyelid protective closure function, and less complication rate. LEVEL OF EVIDENCE IV: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Asunto(s)
Blefaroplastia , Blefaroptosis , Blefaroplastia/métodos , Blefaroptosis/cirugía , Humanos , Músculos Oculomotores/cirugía , Estudios Retrospectivos , Resultado del Tratamiento
7.
Angew Chem Int Ed Engl ; 61(12): e202115308, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35018705

RESUMEN

2D nanomaterials with flexibly modifiable surfaces are highly sought after for various applications, especially in room-temperature chemiresistive gas sensing. Here, we have prepared a series of COF 2D nanomaterials (porphyrin-based COF nanosheets (NS)) that enabled highly sensitive and specific-sensing of NO2 at room temperature. Different from the traditional 2D sensing materials, H2 -TPCOF was designed with a largely reduced interlayer interaction and predesigned porphyrin rings as modifiable sites on its surfaces for post-metallization. After post-metallization, the metallized M-TPCOF (M=Co and Cu) showed remarkably improved sensing performances. Among them, Co-TPCOF exhibited highly specific sensing toward NO2 with one of the highest sensitivities of all reported 2D materials and COF materials, with an ultra-low limit-of-detection of 6.8 ppb and fast response/recovery. This work might shed light on designing and preparing a new type of surface-highly-modifiable 2D material for various chemistry applications.

8.
Small ; 17(21): e2100203, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33856115

RESUMEN

Engineering high-performance electrocatalysts is of great importance for energy conversion and storage. As an efficient strategy, element doping has long been adopted to improve catalytic activity, however, it has not been clarified how the valence state of dopant affects the catalytic mechanism and properties. Herein, it is reported that the valence state of a doping element plays a crucial role in improving catalytic performance. Specifically, in the case of iridium doped nickel-iron layer double hydroxide (NiFe-LDH), trivalent iridium ions (Ir3+ ) can boost hydrogen evolution reaction (HER) more efficiently than tetravalent iridium (Ir4+ ) ions. Ir3+ -doped NiFe-LDH delivers an ultralow overpotential (19 mV @ 10 mA cm-2 ) for HER, which is superior to Ir4+ doped NiFe-LDH (44 mV@10 mA cm-2 ) and even commercial Pt/C catalyst (40 mV@ 10 mA cm-2 ), and reaches the highest level ever reported for NiFe-LDH-based catalysts. Theoretical and experimental analyses reveal that Ir3+ ions donate more electrons to their neighboring O atoms than Ir4+ ions, which facilitates the water dissociation and hydrogen desorption, eventually boosting HER. The same valence-state effect is found for Ru and Pt dopants in NiFe-LDH, implying that chemical valence state should be considered as a common factor in modulating catalytic performance.

9.
Cancer Cell Int ; 21(1): 411, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34348730

RESUMEN

BACKGROUND: Altered Plastin-3 (PLS3; an actin-binding protein) expression was associated with human carcinogenesis, including pancreatic ductal adenocarcinoma (PDA). This study first assessed differentially expressed genes (DEGs) and then bioinformatically and experimentally confirmed PLS3 to be able to predict PDA prognosis and distinguish PDA from diffuse large B-cell lymphoma. METHODS: This study screened multiple online databases and revealed DEGs among PDA, normal pancreas, diffuse large B-cell lymphoma (DLBCL), and normal lymph node tissues and then focused on PLS3. These DEGs were analyzed for Gene Ontology (GO) terms, Kaplan-Meier curves, and the log-rank test to characterize their association with PDA prognosis. The receiver operating characteristic curve (ROC) was plotted, and Spearman's tests were performed. Differential PLS3 expression in different tissue specimens (n = 30) was evaluated by reverse transcription quantitative polymerase chain reaction (RT-qPCR). RESULTS: There were a great number of DEGs between PDA and lymph node, between PDA and DLBCL, and between PDA and normal pancreatic tissues. Five DEGs (NET1, KCNK1, MAL2, PLS1, and PLS3) were associated with poor overall survival of PDA patients, but only PLS3 was further verified by the R2 and ICGC datasets. The ROC analysis showed a high PLS3 AUC (area under the curve) value for PDA diagnosis, while PLS3 was able to distinguish PDA from DLBCL. The results of Spearman's analysis showed that PLS3 expression was associated with levels of KRT7, SPP1, and SPARC. Differential PLS3 expression in different tissue specimens was further validated by RT-qPCR. CONCLUSIONS: Altered PLS3 expression was useful in diagnosis and prognosis of PDA as well as to distinguish PDA from DLBCL.

10.
Neurochem Res ; 46(8): 1941-1952, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33914232

RESUMEN

Sleep deprivation (SD) is widespread in society causing serious damage to cognitive function. Hydrogen sulfide (H2S), the third gas signal molecule, plays important regulatory role in learning and memory functions. Inhibition of excessive autophagy and upregulation of silent information regulator 1 (Sirt-1) have been reported to prevent cognitive dysfunction. Therefore, this present work was to address whether H2S attenuates the cognitive impairment induced by SD in Wistar rats and whether the underlying mechanisms involve in inhibition of excessive autophagy and upregulation of Sirt-1. After treatment with SD for 72 h, the cognitive function of Wistar rats was evaluated by Y-maze, new object recognition, object location, and Morris water maze tests. The results shown that SD-caused cognitive impairment was reversed by treatment with NaHS (a donor of H2S). NaHS also prevented SD-induced hippocampal excessive autophagy, as evidenced by the decrease in autophagosomes, the down-regulation of Beclin1, and the up-regulation of p62 in the hippocampus of SD-exposed Wistar rats. Furthermore, Sirtinol, an inhibitor of Sirt-1, reversed the inhibitory roles of NaHS in SD-induced cognitive impairment and excessive hippocampal autophagy in Wistar rats. Taken together, our results suggested that H2S improves the cognitive function of SD-exposed rats by inhibiting excessive hippocampal autophagy in a hippocampal Sirt-1-dependent way.


Asunto(s)
Autofagia/efectos de los fármacos , Disfunción Cognitiva/prevención & control , Hipocampo/metabolismo , Sulfuro de Hidrógeno/uso terapéutico , Sirtuina 1/metabolismo , Privación de Sueño/complicaciones , Animales , Disfunción Cognitiva/etiología , Masculino , Memoria/efectos de los fármacos , Prueba del Laberinto Acuático de Morris/efectos de los fármacos , Prueba de Campo Abierto/efectos de los fármacos , Ratas Wistar , Aprendizaje Espacial/efectos de los fármacos , Sulfuros/uso terapéutico
11.
Neurochem Res ; 46(3): 611-623, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33534060

RESUMEN

Diabetes-associated cognitive dysfunction (DACD) characterized by hippocampal injury increases the risk of major cerebrovascular events and death. Endoplasmic reticulum (ER) stress and synaptic dysfunction play vital roles in the pathological process. At present, no specific treatment exists for the prevention and/or the therapy of DACD. We have recently reported that hydrogen sulfide (H2S) exhibits therapeutic potential for DACD, but the underlying mechanism has not been fully elucidated. Silent information regulator 1 (SIRT1) has been shown to play a role in regulating the progression of diabetes and is also indispensable for memory formation and cognitive performance. Hence, the present study was performed to explore whether SIRT1 mediates the protective effect of H2S on streptozotocin (STZ)-induced cognitive deficits, an in vivo rat model of DACD, via inhibiting hippocampal ER stress and synaptic dysfunction. The results showed that administration of NaHS (an exogenous H2S donor) increased the expression of SIRT1 in the hippocampus of STZ-induced diabetic rats. Then, results proved that sirtinol, a special blocker of SIRT1, abrogated the inhibition of NaHS on STZ-induced cognitive deficits, as appraised by Morris water maze test, Y-maze test, and Novel object recognition behavioral test. In addition, administration of NaHS eliminated STZ-induced ER stress as evidenced by the decreases in the expressions of ER stress-related proteins including glucose-regulated protein 78, C/EBP homologous protein, and cleaved caspase-12 in the hippocampus, while these effects of NaHS were also reverted by sirtinol. Furthermore, the NaHS-induced up-regulation of hippocampal synapse-related protein (synapsin-1, SYN1) expression in STZ-induced diabetic rats was also abolished by sirtinol. Taken together, these results demonstrated that SIRT1 mediates the protection of H2S against cognitive dysfunction in STZ-diabetic rats partly via inhibiting hippocampal ER stress and synaptic dysfunction.


Asunto(s)
Disfunción Cognitiva/tratamiento farmacológico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Hipocampo/efectos de los fármacos , Sulfuro de Hidrógeno/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Sirtuina 1/metabolismo , Animales , Disfunción Cognitiva/etiología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Masculino , Prueba del Laberinto Acuático de Morris/efectos de los fármacos , Prueba de Campo Abierto/efectos de los fármacos , Ratas Sprague-Dawley , Sulfuros/uso terapéutico , Regulación hacia Arriba/efectos de los fármacos
12.
J Eukaryot Microbiol ; 68(3): e12842, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33484607

RESUMEN

Euglenoids present the ability to alter the shape of their bodies, a process referred to as metaboly. Metaboly is usually used by phagotrophic cells to engulf their prey. However, Euglena gracilis is osmotrophic and photosynthetic. Though metaboly was discovered centuries ago, it remains unclear why E. gracilis undergo metaboly and what causes them to deform, and some consider metaboly to be a functionless ancestral vestige. Here, we discover that flagellum malfunctions trigger metaboly and metaboly is a smart escape strategy adopted by E. gracilis when the proper rotation and beating of the flagellum are hindered by restrictions including surface obstruction, sticking, resistance, or limited space. Metaboly facilitates escape in five ways: (i) detaching the body from the surface; (ii) enlarging the space between flagellum and the restricting surface which restores beating and rotation of the flagellum; (iii) decreasing the torque of viscous resistance for rotation of the body; (iv) decreasing the length of the body; and (v) crawling backwards on a surface or swimming backwards if the flagellum completely malfunctions or has broken off. Our findings suggest that metaboly plays a key role in enabling E. gracilis to escape from harmful conditions when flagellar functions are impaired or absent.


Asunto(s)
Euglena gracilis , Euglena gracilis/genética , Flagelos , Fotosíntesis , Natación
13.
Fish Shellfish Immunol ; 103: 135-142, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32423866

RESUMEN

This study is aimed at identifying the effects of dietary fiber on gut health, as well as the association between that understanding and fiber consumption in fish. A total of 300 juvenile largemouth bass (micropterus salmoides, initial average weight: 15.38 ± 0.16g) were randomly divided into three treatment groups (4 replicates per group). Fish were fed with isoproteic and isolipidic diets containing 0% (low fiber, LF), 4% (moderate fiber, MF) and 8% (high fiber, HF) soybean fiber, respectively. The intestine and intestinal content of test fish per treatment group after 56 days of treatment were sampled. The results showed that the anterior intestinal sections had normal histological architecture, and no considerable damage or inflammation was observed in any histological section from all subjects examined. Curiously, fish fed the MF diet had better histological alterations than the other treatments. Meanwhile, the intestinal antioxidant capacity in the MF group was significantly promoted when compared to the other groups, as well as up-regulated expression of antioxidant-related genes including sod, cat and gpx with increasing dietary fiber concentrations. Importantly, the administrations of MF diet remarkably elevated largemouth bass innate immune parameters include intestinal inducible nitric oxide synthase (iNOS) activity, nitric oxide (NO) and total protein content. Similarly, dietary administrations of fiber down-regulated notablely the expression of pro-inflammatory cytokines including IL-8, IL-1ß and TNFα, whereas up-regulated tolerogenic cytokine IL-10 and TGF-ß1 mRNA levels. In addition, dietary fibers also modulated the community structure of the intestinal microbiota by significantly altering bacterial diversity. Dietary supplemental fibers regulated intestinal microbiota in largemouth bass, characterized by a reduced abundance of Fusobacteria along with increased abundances of Proteobacteria and Firmicutes. Taken together, the present results suggested that moderate fiber supplementation was beneficial to promoting intestinal health status of fish through antioxidant and anti-inflammatory effects, which could be at least partially responsible by the modulation of gut microbial composition.


Asunto(s)
Lubina/inmunología , Fibras de la Dieta/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Intestinos/efectos de los fármacos , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Fibras de la Dieta/administración & dosificación , Suplementos Dietéticos/análisis , Relación Dosis-Respuesta a Droga , Intestinos/anatomía & histología , Intestinos/microbiología , Distribución Aleatoria , Glycine max/química
14.
Fish Shellfish Immunol ; 97: 602-607, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31899355

RESUMEN

The present study was conducted to investigate the effects of bile acids (BAs) on the growth, liver function and immunity of the largemouth bass fed high-starch diet. The experiment set three isonitrogenous and isoenergetic semi-purified diets, LS: low-starch diet (5%), HS: high-starch diet (19%) and SB: high-starch diet with BAs (350 mg/kg diet). An 8-week feeding trial was conducted in largemouth bass of initial weight 23.69 ± 0.13 g. The results indicated that the weight gain (WG) and protein efficiency ratio (PER) of fish fed LS and SB were significantly higher than HS treatment. The superoxide dismutase (SOD) and catalase (CAT) activities of SB group were significantly increased, while malondialdehyde (MDA) content significantly reduced in liver compared with HS group. The activities of alanine aminotransferase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) and glucose contents in plasma of SB group were significantly lower than HS treatment, whereas the content of triglyceride (TG) and total cholesterol (TC) in plasma were significantly higher than HS treatment. Additionally, the plasma immunoglobulin count, lysozyme activity and the blood leukocyte count (WBC) in SB group were significantly higher than HS group. The results of paraffin section of liver showed the histopathological alterations were significantly reduced in the SB group compared to HS group. All in all, this study revealed that bile acids supplement could significantly improve growth performance, enhance liver function and immune ability, and alleviate stress responses of M. salmoides fed high-starch diet.


Asunto(s)
Alimentación Animal/análisis , Lubina/inmunología , Ácidos y Sales Biliares/administración & dosificación , Suplementos Dietéticos/análisis , Hígado/efectos de los fármacos , Almidón/administración & dosificación , Animales , Antioxidantes/administración & dosificación , Lubina/crecimiento & desarrollo , Lubina/fisiología , Ácidos y Sales Biliares/inmunología , Hígado/inmunología
15.
Nutr Metab Cardiovasc Dis ; 30(5): 829-842, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32278611

RESUMEN

BACKGROUND AND AIM: The transcription factor GATA-4 plays an important role in myocardial protection. Astragaloside IV (Ast-IV) was reported with the effects on improving cardiac function after ischemia. In this study, we explored how Ast-IV interacts with GATA-4 to protect myocardial cells H9c2 against Hypoxia/Reoxygenation (H/R) stress. METHODS AND RESULTS: H9c2 cells were cultured under the H/R condition. Various cell activity and morphology assays were used to assess the rates of apoptosis and autophagy. In these H/R injured H9c2 cells, increased apoptosis (P < 0.01) and autophagosome number (P < 0.01) were observed, and the addition of Ast-IV ameliorated this tendency. Mechanistically, we used the RT-qPCR and Western blot to evaluate the expressions of various molecules. The results showed that Ast-IV treatment upregulated gene expression of GATA-4 (P < 0.01) and the survival factors (Bcl-2, P < 0.05; p62, P < 0.01), but suppressed apoptosis and autophagy related genes (PARP, Caspase-3, Beclin-1, and LC3-II; All P < 0.01). Furthermore, overexpressing of GATA-4 by its agonist phenylephrine can also protect H/R injured H9c2 cells, and the addition of Ast-IV further enhanced this protection of GATA-4. In contrast, silencing GATA-4 expression abolished the H/R protection of Ast-IV, which demonstrated that the myocardial protection of Ast-IV is mediated by GATA-4. Lastly, along with GATA overexpression, enhanced interactions between Bcl-2 and Beclin-1 were detected by Chromatin immunoprecipitation (P < 0.01). CONCLUSION: Ast-IV rescued the H/R injury induced apoptosis and autophagy in H9c2 cells. Ast-IV treatment can stimulate the overexpression of GATA-4, and further enhanced the myocardial protection effect of GATA-4.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Factor de Transcripción GATA4/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Saponinas/farmacología , Triterpenos/farmacología , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Hipoxia de la Célula , Línea Celular , Citoprotección , Factor de Transcripción GATA4/genética , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas , Transducción de Señal , Regulación hacia Arriba
16.
Fish Physiol Biochem ; 46(1): 125-134, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31522360

RESUMEN

The present study was conducted to investigate the effects of high dietary lipid levels on growth, metabolism, antioxidant capacity, and immune responses of largemouth bass. Fish (initial body weight 13.38 ± 0.11 g) were fed three isonitrogenous semi-purified diets containing 5%, 10%, and 20% lipid, respectively. The results indicated that fish fed 10% lipid diet showed significantly better final body weight, specific growth rate (SGR), protein efficiency ratio (PER), and feed conversion ratio (FCR) compared with that fed 5% lipid diet. Meanwhile, fish fed 20% lipid diet had a significantly higher viscera ratio (VR), hepatosomatic index (HSI), intraperitoneal fat ratio (IPF), and liver lipid content than those fed the other diets. Higher alanine aminotransferase (ALT) and aspartate transaminase (AST) activities, total cholesterol (TC), triglyceride (TG), free fatty acids (FFA), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) contents, and LDL-C/HDL-C value in plasma were recorded in fish fed 20% lipid diet, while higher insulin contents were obtained in fish fed 5% lipid diet. In addition, the highest carnitine palmitoyltransferase I (CPT1), AMP-activated protein kinase (AMPK), fructose-1,6-bisphosphatase (FBPase), and phosphoenolpyruvate carboxykinase (PEPCK) activities in the liver were also observed in fish fed 20% lipid diet. However, fish fed 20% lipid diet had a significantly lower superoxide dismutase (SOD) and catalase (CAT) activities and higher MDA contents in liver than those fed the other diets. The higher nitric oxide (NO) contents and inducible nitric oxide synthase (iNOS) activity in liver were recorded in fish fed 10% lipid diet. Moreover, the alkaline phosphatase (ALP), inducible nitric oxide synthase (iNOS) and lysozyme activities, and nitric oxide (NO) contents in plasma were higher in fish fed the 10% diets than the other groups. In conclusion, high dietary lipid levels could suppress growth performance and liver anti-oxidative capacity, and reduce immune responses of largemouth bass.


Asunto(s)
Lubina/fisiología , Metabolismo de los Lípidos , Lípidos , Hígado/metabolismo , Proteínas Quinasas Activadas por AMP , Alanina Transaminasa , Animales , Dieta , Grasas de la Dieta , Suplementos Dietéticos , Triglicéridos/metabolismo
17.
Angew Chem Int Ed Engl ; 59(28): 11510-11515, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32233052

RESUMEN

Developing highly efficient and low-cost photocatalysts for overall water splitting has long been a pursuit for converting solar power into clean hydrogen energy. Herein, we demonstrate that a nonstoichiometric nickel-cobalt double hydroxide can achieve overall water splitting by itself upon solar light irradiation, avoiding the consumption of noble-metal co-catalysts. We employed an intensive laser to ablate a NiCo alloy target immersed in alkaline solution, and produced so-called L-NiCo nanosheets with a nonstoichiometric composition and O2- /Co3+ ions exposed on the surface. The nonstoichiometric composition broadens the band gap, while O2- and Co3+ ions boost hydrogen and oxygen evolution, respectively. As such, the photocatalyst achieves a H2 evolution rate of 1.7 µmol h-1 under AM 1.5G sunlight irradiation and an apparent quantum yield (AQE) of 1.38 % at 380 nm.

18.
Gen Comp Endocrinol ; 277: 82-89, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30902611

RESUMEN

In this experiment, Genetically improved farmed Nile tilapia Oreochromis niloticus were intraperitoneally injected with 1 g glucose/kg of body weight or saline. Red and white muscle tissues were collected at 0, 1, 2, 4, 6 and 12 h after the glucose tolerance test (GTT) or saline injection, and the time course of changes in molecular and metabolic adaption of glucose metabolism of these two tissues were evaluated. The results showed that the expression of insulin-responsive glucose transporter 4 (glut4) was up-regulated at 4 h after the GTT in the red muscle, implying an increase of glucose uptake. However, the expression of glut4 in the white muscle did not change with glucose load. The glycolysis of red muscle in tilapia was stimulated during 2-4 h after the GTT, as the expression of hexokinase 1b (hk1b), hk2, phosphofructokinase muscle type a (pfkma) and pfkmb and the activity of HK and PFK increased. By contrast, only the expression of hk1b was up-regulated at 6 h after the GTT in the white muscle. The mRNA level of glycogen synthase 1 (gys1) and glycogen content increased at 2 and 6 h, respectively after the GTT in the red muscle, suggesting that glucose storage was provoked. However, glycogen content in the white muscle was not impacted by GTT. Lipogenesis was stimulated in the red muscle as reflected by up-regulated expression of acetyl-CoA carboxylase α (accα) (during 2-4 h) and accß (during 4-12 h) with GTT. In the white muscle, however, the expression of accα was not changed, and mRNA level of accß was not up-regulated until 6 h after the GTT. Taken together, it was concluded that the glycolytic and glycogen synthesis mechanisms in the red muscle were highly regulated by an acute glucose load while those in the white muscle were less responsive to this stimulus.


Asunto(s)
Adaptación Fisiológica , Cíclidos/metabolismo , Glucosa/metabolismo , Músculos/metabolismo , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Animales , Animales Modificados Genéticamente , Cíclidos/genética , Prueba de Tolerancia a la Glucosa , Glucógeno/metabolismo , Glucógeno Sintasa/metabolismo , Hexoquinasa/genética , Hexoquinasa/metabolismo , Masculino , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Fosfofructoquinasas/metabolismo
19.
Fish Physiol Biochem ; 45(5): 1513-1521, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30945042

RESUMEN

A feeding trial was conducted to evaluate the effect of linseed oil (LO) on growth, plasma biochemistry, hepatic metabolism enzymes, and antioxidant capacity of juvenile largemouth bass, Micropterus salmoides. Four isonitrogenous (crude protein, 45%) and isoenergetic (gross energy, 18 MJ/kg) diets were formulated by replacing 0 (the control), 33.3%, 66.7%, and 100% of fish oil with linseed oil. Each diet was fed to three replicate groups of fish (initial body weight, 22.02 ± 0.61 g) for 8 weeks. The results indicated that fish fed diet with 100% LO substitution level had lower weight gain (WG), specific growth rate (SGR), and protein efficiency ratio (PER) than the other groups (P < 0.05), while feed conversion ratio (FCR) was higher compared to the other groups (P < 0.05). Feed intake (FI) and hepatosomatic index (HSI) of 66.7% LO substitution level were significantly lower than the control groups (P < 0.05). Glycogen, lipid, and non-esterified fatty acid content in the liver decreased significantly with increasing dietary LO levels (P < 0.05). Moreover, the replacement of fish oil (FO) with LO could significantly reduce the content of triglyceride (TG) and total cholesterol (TC) and the activity of alanine amiotransferase (ALT) in plasma of M. salmoides (P < 0.05). There were significant differences in hepatic metabolism enzymes in fish fed diets with different dietary LO levels. Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor (PPAR-α) activities in liver significantly increased with increasing dietary LO level (P < 0.05). In addition, phosphoenolpyruvate carboxykinase (PEPCK) and fructose-1,6-bisphosphatase (FBPase) activities in the liver significantly increased with decreasing dietary LO level (P < 0.05). Both the lowest superoxide dismutase (SOD) and catalase (CAT) activities in the liver were recorded in the control group (P < 0.05). Moreover, nitric oxide content, glutathione peroxidase (GPx), and inducible nitric oxide synthase (iNOS) activities in the liver significantly increased with increasing dietary LO level, while malondialdehyde (MDA) content significantly reduced. These findings demonstrated that LO can improve liver function and antioxidant ability of M. salmoides. In addition, replacing partial FO with LO cannot affect growth performance, but all substitutions inhibit growth performance of M. salmoides.


Asunto(s)
Antioxidantes/metabolismo , Lubina/fisiología , Aceite de Linaza/farmacología , Hígado/metabolismo , Tejido Adiposo/metabolismo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Antioxidantes/administración & dosificación , Antioxidantes/efectos adversos , Dieta/veterinaria , Aceites de Pescado , Aceite de Linaza/administración & dosificación , Aceite de Linaza/química , Hígado/química , Hígado/efectos de los fármacos
20.
Fish Shellfish Immunol ; 78: 121-126, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29684600

RESUMEN

An experimental trial was conducted to investigate the effects of high dietary starch levels on growth, hepatic glucose metabolism enzyme, antioxidant capacity and immune responses of largemouth bass, Micropterus salmoides. Fish (initial body weight: 16.9 ±â€¯0.24 g) were fed three isonitrogenous and isoenergetic semi-purified diets containing 5%, 10% and 20% wheat starch, respectively. The results indicated that fish fed 5% and 10% starch diets showed significantly better weight gain, specific growth rate (SGR), protein efficiency ratio (PER) and feed conversion ratio (FCR) compared with that fed 20% starch diet. Meanwhile, fish fed 20% starch diet had a significantly higher hepatic glycogen and muscle glycogen contents than those fed the other diets. The alanine amiotransferase (ALT) and aspartate transaminase (AST) activities, glucose and insulin contents in plasma increased significantly with dietary starch levels, whereas triglyceride content showed the opposite trend. In addition, the highest glucokinase (GK), pyruvate kinase (PK) and phosphofructokinase (PFK) activities in liver were also observed in fish fed 20% starch diet. However, both fructose-1,6-bisphosphatase (FBPase) and pyruvate carboxylase (PC) activities in liver decreased significantly as dietary starch levels increased. Moreover, the lower superoxide dismutase (SOD) and catalase (CAT), the higher malondialdehyde (MDA) contents in liver were observed in fish fed 20% starch diets. Compared to the 5% and 10% starch, the 20% starch could enhance the content of plasma nitric oxide (NO) and the activities of inducible nitric oxide synthase (iNOS) and alkaline phosphatase (ALP). Results demonstrate that the starch levels may affect growth performance and metabolic changes, which suggest that high-starch diets were inefficiently used as an energy source by M. salmoides juveniles. Excessive dietary starch contents could result in oxidative stress, suppress innate immunity, and thus affect the health status of M. salmoides.


Asunto(s)
Lubina/inmunología , Lubina/fisiología , Dieta/veterinaria , Carbohidratos de la Dieta/metabolismo , Almidón/metabolismo , Alimentación Animal/análisis , Animales , Lubina/crecimiento & desarrollo , Carbohidratos de la Dieta/administración & dosificación , Relación Dosis-Respuesta a Droga , Glucosa/metabolismo , Hígado/metabolismo , Distribución Aleatoria , Almidón/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA