Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 31(13): 21586-21613, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37381254

RESUMEN

Technological innovation, cost effectiveness, and miniaturization are key factors that determine the commercial adaptability and sustainability of sensing platforms. Nanoplasmonic biosensors based on nanocup or nanohole arrays are attractive for the development of various miniaturized devices for clinical diagnostics, health management, and environmental monitoring. In this review, we discuss the latest trends in the engineering and development of nanoplasmonic sensors as biodiagnostic tools for the highly sensitive detection of chemical and biological analytes. We focused on studies that have explored flexible nanosurface plasmon resonance systems using a sample and scalable detection approach in an effort to highlight multiplexed measurements and portable point-of-care applications.


Asunto(s)
Monitoreo del Ambiente , Vibración
2.
Biosens Bioelectron ; 248: 115974, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38171221

RESUMEN

The accumulation of trace amounts of certain small molecules in food poses considerable human health challenges, including the potential for carcinogenesis and mutagenesis. Here, an ultrasensitive gold-platinum nanoflower-coupled metasurface plasmon resonance (MetaSPR) (APNMSPR) biosensor, based on a competitive immunoassay, was developed for the multiplexed and rapid quantitative analysis of trace small molecules in eggs, offering timely monitoring of food safety. This one-step biosensor can be integrated into either a newly designed detachable high-throughput MetaSPR chip-strip plate device or a standard 96-well plate for multiplexed small-molecule detection within a single egg. The limits of detection were 0.81, 1.12, and 1.74 ppt for florfenicol, fipronil, and enrofloxacin, respectively, demonstrating up to 1000-fold increased sensitivity and a 15-fold reduction in analysis time compared with those of traditional methods. The results obtained using the APNMSPR biosensor showed a strong correlation with those obtained using liquid chromatography-tandem mass spectrometry. The APNMSPR biosensor holds immense promise for the multiplexed, highly sensitive, and rapid quantitative analysis of small molecules for applications in food safety control, early diagnosis, and environmental monitoring.


Asunto(s)
Técnicas Biosensibles , Humanos , Técnicas Biosensibles/métodos , Resonancia por Plasmón de Superficie/métodos , Análisis de Peligros y Puntos de Control Críticos , Oro/química , Huevos , Inmunoensayo/métodos
3.
Adv Healthc Mater ; : e2401097, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38800937

RESUMEN

The utilization of surface plasmon resonance (SPR) sensors for real-time label-free molecular interaction analysis is already being employed in the fields of in vitro diagnostics and biomedicine. However, the widespread application of SPR technology is hindered by its limited detection throughput and high cost. To address this issue, this study introduces a novel multifunctional MetaSPR high-throughput microplate biosensor featuring 3D nanocups array structure, aiming to achieve high-throughput screening with a reduced cost and enhanced speed. Different types of MetaSPR sensors and analytical detection methods have been developed for accurate antibody subtype identification, epitope binding, affinity determination, antibody collocation, and quantitative detection, greatly promoting the screening and analysis of early-stage antibody drugs. The MetaSPR platform combined with nano-enhanced particles amplifies the detection signal and improves the detection sensitivity, making it more convenient, sensitive, and efficient than traditional ELISA. The findings demonstrate that the MetaSPR biosensor is a new practical technology detection platform that can improve the efficiency of biomolecular interaction studies with unlimited potential for new drug development.

4.
Adv Sci (Weinh) ; 10(24): e2301658, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37358326

RESUMEN

Developing plasmonic biosensors that are low-cost, portable, and relatively simple to operate remains challenging. Herein, a novel metasurface plasmon-etch immunosensor is described, namely a nanozyme-linked immunosorbent surface plasmon resonance biosensor, for the ultrasensitive and specific detection of cancer biomarkers. Gold-silver composite nano cup array metasurface plasmon resonance chip and artificial nanozyme-labeled antibody are used in two-way sandwich analyte detection. Changes in the biosensor's absorption spectrum are measured before and after chip surface etching, which can be applied to immunoassays without requiring separation or amplification. The device achieved a limit of alpha-fetoprotein (AFP) detection < 21.74 fM, three orders of magnitude lower than that of commercial enzyme-linked immunosorbent assay kits. Additionally, carcinoembryonic antigen (CEA) and carbohydrate antigen 125 (CA125) are used for quantitative detection to verify the universality of the platform. More importantly, the accuracy of the platform is verified using 60 clinical samples; compared with the hospital results, the three biomarkers achieve high sensitivity (CEA: 95.7%; CA125: 90.9%; AFP: 86.7%) and specificity (CEA: 97.3%; CA125: 93.9%; AFP: 97.8%). Due to its rapidity, ease of use, and high throughput, the platform has the potential for high-throughput rapid detection to facilitate cancer screening or early diagnostic testing in biosensing.


Asunto(s)
Técnicas Biosensibles , Neoplasias , Biomarcadores de Tumor , Antígeno Carcinoembrionario , Técnicas Biosensibles/métodos , alfa-Fetoproteínas , Detección Precoz del Cáncer , Inmunoensayo/métodos , Catálisis , Neoplasias/diagnóstico
5.
Biosens Bioelectron ; 199: 113868, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34920226

RESUMEN

COVID-19 vaccination efficacy depends on serum levels of the neutralizing antibodies (NAs) specific to the receptor-binding domain of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. Therefore, a high-throughput rapid assay capable of measuring the total SARS-CoV-2 NA level is urgently needed for COVID-19 serodiagnosis, convalescent plasma therapy, vaccine development, and assessment. Here, we developed a novel nanoplasmonic immunosorbent assay (NanoPISA) platform for one-step rapid quantification of SARS-CoV-2 NAs in clinical serum samples for high-throughput evaluation of COVID-19 vaccine effectiveness. The NanoPISA platform enhanced by the use of nanoporous hollow gold nanoparticle coupling was able to detect SARS-CoV-2 NAs with a limit of detection of 0.2 pM within 15 min without washing steps. The one-step NanoPISA for SARS-CoV-2 NA detection in clinical specimens yielded good results, comparable with those obtained in the gold-standard seroneutralization test and the surrogate virus-neutralizing enzyme-linked immunosorbent assay. Collectively, the one-step NanoPISA might be a rapid and high-throughput NA-quantification platform for evaluating the effectiveness of COVID-19 vaccines.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Nanopartículas del Metal , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/terapia , Vacunas contra la COVID-19 , Oro , Humanos , Inmunización Pasiva , SARS-CoV-2 , Vacunación , Desarrollo de Vacunas , Eficacia de las Vacunas , Sueroterapia para COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA