Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 96(2): 661-667, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38170959

RESUMEN

In ambient ionization mass spectrometry (MS), a customized metal inlet is typically adapted to the orifice of the mass spectrometer for ease of introduction of the sample. We herein explore that the metal inlet coiled with a copper wire (∼50 µm) can be directly used as an ion source to induce corona discharge-like processes for ionization of analytes in the gas phase. When the metal inlet is subjected to a high voltage in the mass spectrometer, the electric field provided by the mass spectrometer enables the generation of corona discharge to ionize volatile/semivolatile analytes derived from the sample in the condensed phase. The limit of detection for azulene derived from the aqueous sample was as low as ∼1 pM. Moreover, we also demonstrated the feasibility of coupling ultraviolet-visible absorption spectroscopy with MS by using the metal inlet coiled with a thin copper wire as the interface. Integration of these two techniques enables the simultaneous acquisition of spectra from both instruments for quantitative and qualitative analysis of the sample. Furthermore, we showed that polar and nonpolar analytes in a mixture can be acquired in the same mass spectrum by simply depositing a sample droplet (∼20 µL) on a dielectric substrate near the copper wire-coiled metal inlet of the mass spectrometer. The ionization processes involved both electrospray ionization and corona discharge. To demonstrate the applicability of our method for detecting nonpolar and polar analytes in complex samples, we spiked a nonpolar analyte, benzo[a]pyrene, to a spice sample and successfully detected analytes with different polarities using our approach.

2.
Anal Chem ; 96(14): 5669-5676, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38527906

RESUMEN

Europium ions (Eu3+) have been utilized as a fluorescence-sensing probe for a variety of analytes, including tetracycline (TC). When Eu3+ is chelated with TC, its fluorescence can be greatly enhanced. Moreover, Eu3+ possesses 6 unpaired electrons in its f orbital, which makes it paramagnetic. Being a hard acid, Eu3+ can chelate with hard bases, such as oxygen-containing functional groups (e.g., phosphates and carboxylates), present on the cell surface of pathogenic bacteria. Due to these properties, in this study, Eu3+ was explored as a magnetic-trapping and sensing probe against pathogenic bacteria present in complex samples. Eu3+ was used as a magnetic probe to trap bacteria such as Staphylococcus aureus, Escherichia coli, Enterococcus faecalis, Acinetobacter baumannii, Bacillus cereus, and Pseudomonas aeruginosa. The addition of TC facilitated the easy detection of magnetic Eu3+-bacterium conjugates through fluorescence spectroscopy, with a detection limit of approximately ∼104 CFU mL-1. Additionally, matrix-assisted laser desorption/ionization mass spectrometry was employed to differentiate bacteria tapped by our magnetic probes.


Asunto(s)
Europio , Tetraciclina , Europio/química , Fluorescencia , Antibacterianos , Staphylococcus aureus/química , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia
3.
Mikrochim Acta ; 191(5): 273, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38635063

RESUMEN

Pathogenic bacteria, including drug-resistant variants such as methicillin-resistant Staphylococcus aureus (MRSA), can cause severe infections in the human body. Early detection of MRSA is essential for clinical diagnosis and proper treatment, considering the distinct therapeutic strategies for methicillin-sensitive S. aureus (MSSA) and MRSA infections. However, the similarities between MRSA and MSSA properties present a challenge in promptly and accurately distinguishing between them. This work introduces an approach to differentiate MRSA from MSSA utilizing matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) in conjunction with a neural network-based classification model. Four distinct strains of S. aureus were utilized, comprising three MSSA strains and one MRSA strain. The classification accuracy of our model ranges from ~ 92 to ~ 97% for each strain. We used deep SHapley Additive exPlanations to reveal the unique feature peaks for each bacterial strain. Furthermore, Fe3O4 MNPs were used as affinity probes for sample enrichment to eliminate the overnight culture and reduce the time in sample preparation. The limit of detection of the MNP-based affinity approach toward S. aureus combined with our machine learning strategy was as low as ~ 8 × 103 CFU mL-1. The feasibility of using the current approach for the identification of S. aureus in juice samples was also demonstrated.


Asunto(s)
Nanopartículas de Magnetita , Staphylococcus aureus Resistente a Meticilina , Humanos , Staphylococcus aureus , Meticilina , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Aprendizaje Automático
4.
Molecules ; 29(1)2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38202720

RESUMEN

Triazine herbicides are commonly used in agriculture to eliminate weeds. However, they can persist in the environment. In this study, we explored a new method for detecting triazine herbicides in aqueous samples. We selected two triazine herbicides, namely, prometryn and ametryn, as model herbicides. To generate magnetic probes, we mixed aqueous Gd3+ with aqueous sodium dodecyl sulfate (SDS), which created magnetic probes made of Gd3+-SDS micelles. These probes showed a trapping capacity for the model herbicides. Results indicated that the trapping capacities of our magnetic probes for ametryn and prometryn were approximately 466 and 468 nmol mg-1, respectively. The dissociation constants of our probes toward ametryn and prometryn were 2.92 × 10-5 and 1.27 × 10-5, respectively. This is the first report that the developed magnetic probes can be used to trap triazine herbicides. For detection, we used carbon fiber ionization mass spectrometry (CFI-MS), which can be used to directly detect semi-volatiles from the samples in the condensed phase. Because of the semi-volatility of triazine herbicides, the herbicides trapped by the magnetic probes can be directly analyzed by CFI-MS without any elution steps. In addition, we also demonstrated the feasibility of using our approach for detecting triazine herbicides in lake water and drinking water.

5.
Anal Bioanal Chem ; 414(16): 4633-4643, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35445835

RESUMEN

A sharp metal needle used as the ionization emitter in conventional atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) is usually required for analyte ionization through corona discharge (i.e., gas discharge). Nevertheless, we herein demonstrate that an insulating fiber (tip diameter: 10-60 µm; length: ~ 1 cm) made of glass or bamboo can function as an APCI-like ionization emitter. Although no direct electric contact is made on the fiber, the ionization of volatiles and semi-volatiles occurs when the fiber is placed close (~ 1 mm) to the inlet of the mass spectrometer. No analyte ion signals can be observed without placing the insulating fiber in front of the mass spectrometer. The generation of ion species mainly relies on the electric field provided by the mass spectrometer. Presumably, owing to the high electric field provided by the mass spectrometer, the dielectric breakdown voltages of gas molecules in the air and the fiber are overcome, leading to the ionization of analytes in gas phase. In addition, the insulating fiber can function as a holder for sample solutions. Electrospray ionization-like processes derived from polar analytes such as amino acids, peptides, and proteins can readily occur when the insulating fiber deposited with a sample droplet is placed close to the inlet of the mass spectrometer. The feasibility of using the current approach for the detection of nonpolar and polar analytes from complex fetal bovine serum samples without tedious sample pretreatment is demonstrated in this work. The main advantage of using the suggested fiber is that the fiber can be used as the sampling probe to pick up samples and placed in front of a mass spectrometer for direct MS analysis. The application of using a robust, insulating, and disposable probe to pick up samples from real samples such as onion, honey, and pork samples followed by direct MS analysis is also demonstrated.


Asunto(s)
Presión Atmosférica , Espectrometría de Masa por Ionización de Electrospray , Aminoácidos , Péptidos/análisis , Estructuras de las Plantas/química , Espectrometría de Masa por Ionización de Electrospray/métodos
6.
Molecules ; 27(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36500496

RESUMEN

Tetracycline (TC) is an antibiotic that has been widely used in the animal husbandry. Thus, TC residues may be found in animal products. Developing simple and sensitive methods for rapid screening of TC in complex samples is of great importance. Herein, we demonstrate a fluorescence-sensing method using Zn2+ as sensing probes for the detection of TC. Although TC can emit fluorescence under the excitation of ultraviolet light, its fluorescence is weak because of dynamic intramolecular rotations, leading to the dissipation of excitation energy. With the addition of Zn2+ prepared in tris(hydroxymethyl)amino-methane (Tris), TC can coordinate with Zn2+ in the Zn2+-Tris conjugates to form Tris-Zn2+-TC complexes. Therefore, the intramolecular motions of TC are restricted to reduce nonradiative decay, resulting in the enhancement of TC fluorescence. Aggregation-induced emission effects also play a role in the enhancement of TC fluorescence. Our results show that the linear dynamic range for the detection of TC is 15-300 nM. Moreover, the limit of detection was ~7 nM. The feasibility of using the developed method for determination of the concentration of TC in a complex chicken broth sample is also demonstrated in this work.


Asunto(s)
Colorantes Fluorescentes , Compuestos Heterocíclicos , Animales , Colorantes Fluorescentes/química , Zinc/química , Tetraciclina/química , Antibacterianos , Espectrometría de Fluorescencia/métodos
7.
Anal Chem ; 93(19): 7310-7316, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33956441

RESUMEN

Aflatoxin B1 (AFB1), commonly found in agriculture products, has been considered as a carcinogen. Thus, to develop analytical methods that can be used to rapidly screen the presence of AFB1 in complex samples is important. Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) uses inorganic materials as assisting materials to facilitate desorption/ionization of analytes. The feasibility of using GO as the affinity probe against AFB1 and as the assisting material in SALDI-MS analysis was first demonstrated. We also explored a facile method to impose magnetism on GO to generate magnetic GO (MGO) nanoprobes by simply incubating GO in aqueous FeCl3 under microwave heating. The generated MGO nanoprobes possessed magnetism and were capable of enriching trace AFB1 from complex samples. AFB1 enrichment took only 6 min by incubating MGO with samples under microwave heating (power = 90 W). Followed by magnetic isolation, the isolated conjugates were ready for SALDI-MS analysis. The enrichment steps including trapping and isolation can be completed within ∼10 min. The lowest detectable concentration of our method toward AFB1 was ∼1 nM. Results also showed that AFB1 can be selectively detected from complex samples, including cell lysates of fungal spores, AFB1-spiked peanut, and wheat samples, by using the developed method. The selectivity of our method against AFB1 from the samples containing other toxins including aflatoxin G1 and ochratoxin A was also examined. According to these results, we believe that the developed method should have the potential to be used for rapid screening of AFB1 from real-world samples.


Asunto(s)
Aflatoxina B1 , Grafito , Rayos Láser , Luz
8.
Mikrochim Acta ; 188(10): 339, 2021 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-34510288

RESUMEN

The use of lactosylated Fe3O4 magnetic nanoparticles (MNP@LAC) has been explored as affinity probes against ricin B based on galactose-ricin B binding interactions. Lactose was bound onto the surface of aminated MNPs through the Maillard reaction. The enrichment of ricin B took ~1 h by incubating MNP@LAC with samples under shaking at room temperature, followed by magnetic isolation. The resultant MNP@LAC-ricin B conjugates were characterized by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The limit of detection toward ricin B was ~3 nM by using the developed method. It was possible to detect the peptides derived from the tryptic digest of trace ricin B (~0.39 nM) enriched by the MNP@LAC probes followed by tryptic digestion and MALDI-MS analysis. The feasibility of using the developed method for detection of ricin B from complex white corn starch samples spiked with trace ricin B was demonstrated.

9.
Molecules ; 26(22)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34833852

RESUMEN

Atmospheric pressure chemical ionization (APCI)-mass spectrometry (MS) and electrospray ionization (ESI)-MS can cover the analysis of analytes from low to high polarities. Thus, an ion source that possesses these two ionization functions is useful. Atmospheric surface-assisted ionization (ASAI), which can be used to ionize polar and nonpolar analytes in vapor, liquid, and solid forms, was demonstrated in this study. The ionization of analytes through APCI or ESI was induced from the surface of a metal substrate such as a titanium slab. ASAI is a contactless approach operated at atmospheric pressure. No electric contacts nor any voltages were required to be applied on the metal substrate during ionization. When placing samples with high vapor pressure in condensed phase underneath a titanium slab close to the inlet of the mass spectrometer, analytes can be readily ionized and detected by the mass spectrometer. Furthermore, a sample droplet (~2 µL) containing high-polarity analytes, including polar organics and biomolecules, was ionized using the titanium slab. One titanium slab is sufficient to induce the ionization of analytes occurring in front of a mass spectrometer applied with a high voltage. Moreover, this ionization method can be used to detect high volatile or polar analytes through APCI-like or ESI-like processes, respectively.


Asunto(s)
Presión Atmosférica , Espectrometría de Masa por Ionización de Electrospray , Titanio
10.
Anal Bioanal Chem ; 412(22): 5489-5497, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32583215

RESUMEN

Carbon fiber ionization (CFI)-mass spectrometry (MS) is an ambient technique that can be used to detect samples in gas, liquid, and solid forms simply by using a piece of carbon fiber as the ionization emitter. Reactive MS can be performed to selectively detect target analytes by conducting fast reactions during ionization. Most ambient ionization MS techniques used to monitor chemical reactions are limited to liquid-phase reactions. Herein, we develop reactive CFI-MS to be a suitable tool for monitoring of reaction products derived from volatile unsaturated hydrocarbons in the gas phase. Hydroamination is a fast reaction that can form a carbon-nitrogen bond through the addition of an amine to unsaturated hydrocarbons. In this study, reactive CFI-MS was used to selectively characterize aroma molecules, which are unsaturated hydrocarbons derived from plants, through hydroamination. A piece of carbon fiber was placed close (~ 1 mm) to the inlet of the mass spectrometer and deposited with dried methylamine. The sample in either liquid or solid form was placed underneath the carbon fiber. The volatiles derived from the sample reacted with amine on the carbon fiber were simultaneously determined once the mass spectrometer was switched on. For proof of concept, ethylene glycol dimethacrylate, which has double bonds and is highly volatile, was initially selected as the model sample to demonstrate the feasibility of using reactive CFI-MS to detect its hydroamination derivative. Banana, garlic, and ginger, which possess aroma molecules with unsaturated hydrocarbons, were selected as real-world samples. Graphical abstract.


Asunto(s)
Fibra de Carbono/química , Hidrocarburos/química , Odorantes/análisis , Plantas/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Aminación , Estándares de Referencia
11.
Anal Chem ; 91(15): 10335-10342, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31290655

RESUMEN

Acinetobacter baumannii (A. baumannii) strains are common nosocomial pathogens that can cause infections and can easily become resistant to antibiotics. Thus, analytical methods that can be used to rapidly identify A. baumannii from complex samples should be developed. Tail fiber proteins derived from the tail fibers of bacteriophages can recognize specific bacterial surface polysaccharides. For example, recombinant tail proteins, such as TF2 and TF6 derived from the tail fibers of bacteriophages ϕAB2 and ϕAB6, can recognize A. baumannii clinical isolates M3237 and 54149, respectively. Thus, TF2 and TF6 can be used as probes to target specific A. baumannii strains. Generally, TF2 and TF6 are tagged with a hexahistidine (His6) for ease of purification. Given that His6 possesses specific affinity toward alumina through His6-Al chelation, TF2- and TF6-immobilized alumina-coated magnetic nanoparticles (Fe3O4@Al2O3 MNPs) were generated through chelation under microwave heating (power, 900 W) for 60 s in this study. The as-prepared TF2-Fe3O4@Al2O3 and TF6-Fe3O4@Al2O3 MNPs were used as affinity probes to trap trace A. baumannii M3237 and 54149, respectively, from sample solutions. Matrix-assisted laser desorption/ionization mass spectrometry capable of identifying bacteria on the basis of the obtained fingerprint mass spectra of intact bacteria was used as the detection tool. Results demonstrated that the current approach can be used to distinguish A. baumannii M3237 from A. baumannii 54149 by using TF2-Fe3O4@Al2O3 and TF6-Fe3O4@Al2O3 MNPs as affinity probes. Furthermore, the limits of detection of the current method for A. baumannii M3237 and 54149 are ∼105 and ∼104 cells mL-1, respectively. The feasibility of using the developed method to selectively detect A. baumannii M3237 and 54149 from complex serum samples was demonstrated.


Asunto(s)
Infecciones por Acinetobacter/diagnóstico , Acinetobacter baumannii/aislamiento & purificación , Bacteriófagos/metabolismo , Cromatografía de Afinidad/métodos , Nanopartículas de Magnetita/química , Proteínas Recombinantes/metabolismo , Proteínas de la Cola de los Virus/metabolismo , Humanos , Proteínas Recombinantes/química , Proteínas de la Cola de los Virus/química
12.
Analyst ; 144(10): 3289-3296, 2019 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-30949633

RESUMEN

Bacillus spp. are spore-forming bacteria, and some of them, including Bacillus cereus and Bacillus anthracis, are pathogens. Dipicolinic acid (DPA) has been recognized as a biomarker for spore-forming bacteria. Thus, developing rapid sensing methods to spot the presence of DPA in suspicious samples is significant. In this study, we employ complexes of glutathione-capped gold nanoclusters (Au@GSH NCs) with Cu2+ as sensing probes against DPA. Au@GSH NCs possess orange-reddish fluorescence. However, their fluorescence is significantly quenched in the presence of Cu2+. In the presence of DPA, the fluorescence of Au@GSH NCs can be restored because DPA can easily remove Cu2+ on the NCs through chelation based on the high formation constant (log K = 7.97) between Cu2+ and DPA. Therefore, on the basis of this fact, Au@GSH NC-Cu2+ complexes are used as turn-on fluorescence probes against DPA. Unlike most of the existing sensing methods, the developed Au@GSH-Cu2+-based sensing method is not affected by the presence of phosphates, which can be commonly found in real samples. The limit of detection of using the developed sensing method toward DPA can reach as low as ∼19 nM. In addition, we also demonstrate the feasibility of using the developed sensing method for detection and quantification of DPA in soil samples and B. cereus spore lysates.


Asunto(s)
Colorantes Fluorescentes/química , Oro/química , Nanopartículas del Metal/química , Ácidos Picolínicos/análisis , Espectrometría de Fluorescencia/métodos , Bacillus cereus/aislamiento & purificación , Biomarcadores/análisis , Quelantes/análisis , Quelantes/química , Cobre/química , Fluorescencia , Glutatión/química , Límite de Detección , Ácidos Picolínicos/química , Suelo/química
13.
Anal Bioanal Chem ; 411(5): 1095-1105, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30613840

RESUMEN

Trace and toxic pesticide residues may still remain on crops after harvest. Thus, maximum residual levels (MRLs) of pesticides on crops have been regulated. To determine whether the remaining pesticide residue level is below MRL, time-consuming sample pretreatment is needed prior to analysis of crop samples by suitable analytical tools. By elimination of sample pretreatment steps, a high-throughput method can be developed to determine the presence of pesticide residues directly on intact crops. Carbon fiber ionization mass spectrometry (CFI-MS) is effective in determining analytes with different polarities in solid, liquid, and vapor phases in open air. Moreover, the vapor derived from solid or liquid samples possessing high vapor pressure can be readily detected by CFI-MS. The setup of CFI-MS is straightforward. A carbon fiber (diameter of ~ 10 µm and length of ~ 1 cm) is placed close (~ 1 mm) to the inlet of the mass spectrometer applied with a high voltage (- 4.5 kV). No direct electrical contact applied on the carbon fiber is required. When placing the sample with certain vapor pressure underneath the carbon fiber, analyte ions derived from the sample can be readily detected by the mass spectrometer. Given that most pesticides possess a certain vapor pressure (~ 1.33 × 10-5-~ 1.33 × 10-4 Pa), we herein develop a qualitative and quantitative analysis method to determine pesticide residues on intact fruits such as tomato based on CFI-MS without requiring any sample pretreatment. Atrazine, ametryn, carbofuran, chlorpyrifos, isoprocarb, and methomyl were selected as model samples. Low limits of detection (at nM range) were achieved for the model pesticides using the current approach. Moreover, we demonstrated that the precision and accuracy of quantitative analysis of ~ 5% and ~ 2%, respectively, could be achieved using this approach. Graphical Abstract ᅟ.


Asunto(s)
Fibra de Carbono/química , Espectrometría de Masas/instrumentación , Residuos de Plaguicidas/análisis , Solanum lycopersicum/química , Diseño de Equipo , Análisis de los Alimentos/instrumentación , Límite de Detección
14.
Mikrochim Acta ; 186(12): 847, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31776791

RESUMEN

A new colorimetric method that can be used to rapidly detect toxic ricin is demonstrated. Lactosylated cysteine-functionalized gold nanoparticles (Au@LACY NPs) were prepared by a one-pot reaction and employed as optical probes for determination of ricin B chain. It is found that the Au@LACY NPs undergo aggregation in the presence of ricin B chain. This leads to surface plasmon coupling effects of the particles and a color change from red to blue, with absorption maxima at 519 and 670 nm, respectively. The feasibility of using the current approach for quantitative analysis of ricin B chain is also demonstrated. The calibration plot is generated by plotting the ratio of the absorbance at the wavelength of 634 to 518 nm versus the concentration of the ricin B chain. The spectrophotometric method has a ~29 pM (~ 0.91 ng·mL-1) detection limit, and the sample with the concentration of ~ 400 pM (~ 13 ng·mL-1) can be detected visually. Graphical abstractSchematic representation of using lactosylated cysteine capped gold nanoparticles (Au@LACY NPs) as colorimetric probes for the ricin B chain through surface plasmon coupling effects. Sample solution turns from red to blue in the presence of ricin B chain.


Asunto(s)
Colorimetría/métodos , Colorantes/química , Cisteína/análogos & derivados , Lactosa/análogos & derivados , Nanopartículas del Metal/química , Ricina/análisis , Contaminación de Alimentos/análisis , Oro/química , Límite de Detección , Espectrofotometría Ultravioleta/métodos , Almidón/química
15.
Anal Bioanal Chem ; 410(6): 1805-1815, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29368149

RESUMEN

Dipicolinic acid (DPA) can cause neurotoxicity and is abundant in bacterial spores. Although analytical methods have been reported for DPA detection with high sensitivity, their selectivity toward DPA is declined greatly in the presence of phosphates in the samples. In this study, we developed an approach for DPA detection that is not affected by the presence of phosphates. A colorimetric method based on the use of gold nanoparticles (AuNP) complexed with Ca2+ as sensing agents was explored for DPA detection. Calcium ions and glutathione-capped gold nanoparticles (AuNPs@GSH) can easily form complexes (Ca2+-AuNP@GSH) through GSH-Ca2+ chelation, leading to the aggregation of AuNPs@GSH. The aggregation resulting from the complexes of AuNPs@GSH and Ca2+ can be reversed with the addition of DPA owing to the high formation constant (log Kf = 4.4) between DPA and Ca2+. Furthermore, the color of AuNPs@GSH changes from red to purple when complexed with Ca2+, returning to red upon addition of DPA. The limit of detection of this sensing method toward DPA was estimated to be as low as ~ 2 µM. The feasibility of using the sensing method for quantitative detection of DPA in soil and Bacillus cereus spore samples was also demonstrated. Graphical abstract A AuNP-based colorimetric sensing method against dipicolinic acid is developed.


Asunto(s)
Bacillus cereus/química , Colorimetría/métodos , Oro/química , Nanopartículas del Metal/química , Ácidos Picolínicos/análisis , Suelo/química , Esporas Bacterianas/química , Calcio/química , Glutatión/química
16.
Anal Chem ; 89(24): 13458-13465, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29155550

RESUMEN

Various ionization methods in mass spectrometry (MS) are available for the analysis of analytes with different properties. Nonetheless, the use of a single ionization method to analyze mixtures containing analytes with different polarities and volatilities in different phases at atmospheric pressure remains a challenge. Exploring an ionization method that can ionize small organics and large biomolecules with different properties for MS analysis is advantageous. Carbon fiber ionization mass spectrometry (CFI-MS), which uses a carbon fiber bundle as the ion source, is useful for the analysis of small organics with low polarities. Voltage needs to be applied on the carbon fiber bundle to initiate corona discharge for ionization of analytes. In this study, we explore the suitability of using CFI-MS in the analysis of analytes in vapor, liquid, and solid phases using a single carbon fiber (length : ∼1 cm; diameter: ∼10 µm) as the ion source. Furthermore direct electric contact on the carbon fiber is not required. We demonstrate that CFI-MS is useful for analyzing not only small and low-polarity organics but also polar biomolecules, such as peptides and proteins. The limits of detection for analytes with high polarities such as dodecyl trimethylammonium bromide and bradykinin are estimated to be ∼16 and ∼53 pM, respectively. Ionization mechanisms, including corona discharge and electrospray, are involved in the ionization of analytes with the polarity from low to high. Furthermore, sesame oil containing aromatic volatiles and compounds with different polarities is used as a model sample to demonstrate the capability of the developed ionization method to provide comprehensive chemical information from a complex sample. In addition, the feasibility of using the developed method for quantitative analysis of nonpolar as well as medium and high polarity analytes is also demonstrated. The sensitivity of the developed method toward analytes with high polarity is higher than those with low polarity. The method precision was estimated to be ∼7.8%.

17.
Anal Chem ; 88(18): 9151-7, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27571682

RESUMEN

Mass spectrometry (MS) and Raman spectroscopy are complementary analytical techniques used to provide information related to chemical structures and functional groups of target analytes. Each instrument provides specific chemical information. If these two analytical tools are coupled online, comprehensive structural information can be simultaneously collected from the analytes of interest without losing any important chemical information. Nevertheless, exploring a suitable interface for coupling of these analytical tools, which are governed with different operation principles, remains challenging. In this study, we used a small piece of tissue paper as an interface for hyphenating a Raman spectroscope and a mass spectrometer online. The paper played multiroles as sample loading substrate and an emitter to generate electrospray. Furthermore, it can facilitate surface-enhanced Raman spectroscopic analysis to improve analyte signals in Raman spectra. A sample droplet was placed on the tissue paper located close to the laser of the Raman spectroscope and the inlet of mass spectrometer. Raman spectra were first collected by the Raman spectroscope through laser irradiation followed by generation of electrospray on the edge of the paper for MS analysis. Positional isomers were used as model samples to demonstrate the effectiveness of the hyphenated analytical tool in distinguishing isomers. The feasibility of using this Raman-MS hyphenated technique for monitoring chemical reactions online in real time was also investigated.

18.
Anal Chem ; 88(14): 7337-43, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27337108

RESUMEN

Liposomes and cells have high lipid contents, which are the main components of the external and internal membranes. Mass spectrometry (MS) is widely used in the analysis of the lipids present in the biological matrixes. However, MS analysis of liposome and cell suspensions is challenging due to the presence of other high-abundance matrix components (e.g., salts, buffers, and growth media) that cause ion suppression. These interfering species would normally be removed by dialysis or centrifugation. Here we propose a simple and fast method to detect major lipid components in cells and cell suspensions by MS while circumventing dialysis and centrifugation. Capillary hydrodynamic chromatography (HDC) has been coupled online with the aid of an electrospray ionization (ESI) interface to an ion-trap mass spectrometer. Complex samples containing bioparticles and a large amount of potential interferences (buffer, inorganic salts, amino acids) were separated hydrodynamically, detected optically (by light absorption/scattering), and immediately transferred to the MS interface. Liposomes and animal cells are disintegrated during electrospray, and the constituent lipids are ionized. The signal-to-noise ratios are ∼10× higher in HDC-ESI-MS than in direct infusion ESI-MS experiments (with or without dilution). This method has been tested on liposomes (containing phosphatidylcholine and phosphatidylglycerol) and four types of animal/human cells, i.e., mouse macrophages (RAW 264.7), human breast cancer cells (T47D and Hs578T), and mouse preadipocyte cells (3T3-L1). We suggest that HDC-ESI-MS can be used in quality control analyses of bioparticle suspensions in the fields of biotechnology, molecular biology, drug discovery, and cosmetics.


Asunto(s)
Lípidos/análisis , Liposomas/química , Espectrometría de Masa por Ionización de Electrospray , Células 3T3-L1 , Animales , Línea Celular Tumoral , Humanos , Ratones , Fosfatidilcolinas/análisis , Fosfatidilcolinas/química , Fosfatidilgliceroles/química , Células RAW 264.7
19.
J Mol Recognit ; 29(11): 528-535, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27195946

RESUMEN

Insulin is a peptide hormone that can regulate the metabolism of carbohydrates and lipids. This hormone is closely related to glucose-uptake in cells and can control blood glucose levels. Dextran is a polysaccharide composed of glucose units. In this study, we discovered that dextran-encapsulated gold nanoparticles (AuNPs@Dextran) and nanoclusters (AuNCs@Dextran) can be used to recognize insulin. The dissociation constant of insulin toward AuNPs@Dextran was estimated to be ∼5.3 × 10-6 M. The binding site on insulin toward the dextran on the nanoprobes was explored as well. It was found that the sequence of numbers 1-22 on the insulin B chain can interact with the dextran encapsulated nanoprobes. Additionally, we also demonstrated that the dextran-encapsulated nanoprobes could be used as concentration probes to selectively enrich trace amounts of insulin (∼1 pM) from serum samples. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Dextranos/metabolismo , Insulina/metabolismo , Nanopartículas del Metal/química , Secuencia de Aminoácidos , Sitios de Unión , Dextranos/química , Oro , Insulina/química
20.
Anal Chem ; 87(4): 2114-20, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25587929

RESUMEN

Staphylococcus aureus is one of the common pathogenic bacteria responsible for bacterial infectious diseases and food poisoning. This study presents an analytical method based on the affinity nanoprobe-based mass spectrometry that enables detection of S. aureus in aqueous samples. A peptide aptamer DVFLGDVFLGDEC (DD) that can recognize S. aureus and methicillin-resistant S. aureus (MRSA) was used as the reducing agent and protective group to generate DD-immobilized gold nanoparticles (AuNPs@DD) from one-pot reactions. The thiol group from cysteine in the peptide aptamer, i.e., DD, can interact with gold ions to generate DD-immobilized AuNPs in an alkaline solution. The generated AuNPs@DD has an absorption maximum at ∼518 nm. The average particle size is 7.6 ± 1.2 nm. Furthermore, the generated AuNPs@DD can selectively bind with S. aureus and MRSA. The conjugates of the target bacteria with AuNPs were directly analyzed by surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS). The gold ions generated from the AuNPs@DD anchored on the target bacteria were monitored. Gold ions (m/z 197 and 394) were only generated from the conjugates of the target bacterium-AuNP@DD in the SALDI process. Thus, the gold ions could be used as the indicators for the presence of the target bacteria. The detection limit of S. aureus using this method is in the order of a few tens of cells. The low detection limit is due to the ease of generation of gold cluster ion derived from AuNPs under irradiation with a 355 nm laser beam. Apple juice mixed with S. aureus was used as the sample to demonstrate the suitability of the method for real-world application. Because of its low detection limit, this approach can potentially be used to screen the presence of S. aureus in complex samples.


Asunto(s)
Aptámeros de Péptidos/química , Bebidas/microbiología , Oro/química , Nanopartículas del Metal/química , Péptidos/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Staphylococcus aureus/aislamiento & purificación , Secuencia de Aminoácidos , Humanos , Límite de Detección , Nanopartículas del Metal/ultraestructura , Staphylococcus aureus Resistente a Meticilina/química , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Sustancias Reductoras/química , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA