Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Parasitol Res ; 123(1): 81, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38165486

RESUMEN

Cryptosporidium is an important gastrointestinal parasite that can cause mild to severe diarrhea in various vertebrates, including humans and domestic animals. Infection is prevalent in dairy cattle, particularly calves, resulting in diarrhea and increased mortality with significant production losses. However, the prevalence and identity of Cryptosporidium spp. in cattle in Heilongjiang Province is still poorly known. Our study aimed to investigate the prevalence and species and subtype distribution of Cryptosporidium in cattle in the region. In addition, we evaluated the zoonotic potential of Cryptosporidium isolates and assessed possible transmission routes and health effects of this organism. We collected 909 fecal samples from five different farms in Heilongjiang Province between August and September 2022. The samples underwent Cryptosporidium detection by nested PCR and small subunit (SSU) rRNA gene sequence analysis. Four Cryptosporidium species were identified, including C. parvum, C. bovis, C. ryanae, and C. andersoni, with an overall prevalence of 4.4% (40/909). Based on sequence analysis of the 60 kDa glycoprotein gene of C. parvum and C. bovis, three subtypes of C. parvum were identified, namely two previously known subtypes (IIdA19G1 and IIdA20G1), and one novel subtype (IIdA24G2). Two distinct subtype families were identified in C. bovis (XXVId and XXVIe). The high diversity of Cryptosporidium in dairy cattle and the emergence of a novel subtype of C. parvum in Heilongjiang Province suggest that dairy cattle may serve as a significant source of zoonotic cryptosporidiosis infection in this region.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Humanos , Bovinos , Animales , Cryptosporidium/genética , Criptosporidiosis/epidemiología , Zoonosis/epidemiología , China/epidemiología , Diarrea/epidemiología , Diarrea/veterinaria
2.
Parasitology ; 150(6): 531-544, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37051887

RESUMEN

Cryptosporidium spp. are significant opportunistic pathogens causing diarrhoea in humans and animals. Pigs are one of the most important potential hosts for Cryptosporidium. We evaluated the prevalence of Cryptosporidium in pigs globally using published information and a random-effects model. In total, 131 datasets from 36 countries were included in the final quantitative analysis. The global prevalence of Cryptosporidium in pigs was 16.3% (8560/64 809; 95% confidence interval [CI] 15.0­17.6%). The highest prevalence of Cryptosporidium in pigs was 40.8% (478/1271) in Africa. Post-weaned pigs had a significantly higher prevalence (25.8%; 2739/11 824) than pre-weaned, fattening and adult pigs. The prevalence of Cryptosporidium was higher in pigs with no diarrhoea (12.2%; 371/3501) than in pigs that had diarrhoea (8.0%; 348/4874). Seven Cryptosporidium species (Cryptosporidium scrofarum, Cryptosporidium suis, Cryptosporidium parvum, Cryptosporidium muris, Cryptosporidium tyzzeri, Cryptosporidium andersoni and Cryptosporidium struthioni) were detected in pigs globally. The proportion of C. scrofarum was 34.3% (1491/4351); the proportion of C. suis was 31.8% (1385/4351) and the proportion of C. parvum was 2.3% (98/4351). The influence of different geographic factors (latitude, longitude, mean yearly temperature, mean yearly relative humidity and mean yearly precipitation) on the infection rate of Cryptosporidium in pigs was also analysed. The results indicate that C. suis is the dominant species in pre-weaned pigs, while C. scrofarum is the dominant species in fattening and adult pigs. The findings highlight the role of pigs as possible potential hosts of zoonotic cryptosporidiosis and the need for additional studies on the prevalence, transmission and control of Cryptosporidium in pigs.


Asunto(s)
Criptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Enfermedades de los Porcinos , Porcinos , Animales , Humanos , Criptosporidiosis/epidemiología , Prevalencia , Enfermedades de los Porcinos/epidemiología , Heces , Genotipo
3.
J Eukaryot Microbiol ; 69(2): e12878, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34877732

RESUMEN

To find out whether and how the prevalence and genetic diversity of Cryptosporidium in neonatal calves vary with the season, 380 fecal samples from neonatal calves on two large-scale farms in Xinjiang (Alar and Wensu) were studied using molecular biology techniques. Cryptosporidium was detected in 48.7% (185/380) of the samples and was most frequent in summer (56.8%), followed by spring (50.0%), winter (46.8%), and autumn (41.7%; p > 0.05). Calves with diarrhea seem to be more likely infected by Cryptosporidium than those without diarrhea (p < 0.01). We also found that C. parvum (n = 173), C. bovis (n = 7), and C. ryanae (n = 3) were the Cryptosporidium species detected in this study, and co-infections of these three species (n = 2) were also identified. Two subtypes (IIdA14G1 and IIdA15G1) of C. parvum were identified, and both can infect human. These results also show that neonatal calves commonly suffer diarrhea caused by C. parvum throughout the year.


Asunto(s)
Enfermedades de los Bovinos , Criptosporidiosis , Cryptosporidium , Animales , Bovinos , Enfermedades de los Bovinos/epidemiología , China/epidemiología , Criptosporidiosis/epidemiología , Cryptosporidium/genética , Diarrea/epidemiología , Diarrea/veterinaria , Granjas , Heces , Variación Genética , Humanos , Prevalencia , Estaciones del Año
4.
Parasitology ; 149(12): 1652-1665, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36073170

RESUMEN

Cryptosporidium spp. are important pathogens with some species causing diarrhoea in humans and animals. Sheep are one of the most common potential hosts for various Cryptosporidium spp. The prevalence of Cryptosporidium in sheep globally was evaluated from published information including molecular data via meta-analysis. In total, 126 datasets from 41 countries were included for final quantitative analysis. Sheep aged <3 months had a significantly higher prevalence (27.8%; 3284/11 938) than those at the age of 3­12 and >12 months. The prevalence of Cryptosporidium in sheep with diarrhoea of 35.4% (844/1915) was higher than in sheep that did not show diarrhoea (11.3%; 176/1691). Fourteen Cryptosporidium species/genotypes were detected in sheep globally. The proportion of subgenotype family XIIa of Cryptosporidium ubiquitum was 90.0% (216/240); the proportions of subgenotypes IIdA20G1 and IIaA15G2R1 of Cryptosporidium parvum were 15.4% (62/402) and 19.7% (79/402). The results indicate that C. parvum is the dominant species in Europe while Cryptosporidium xiaoi is the dominant species in Oceania, Asia and Africa and C. ubiquitum is the dominant species in North America and South America. Subgenotype family IIa of C. parvum is particularly widespread among sheep worldwide. The results highlight the role of sheep as a reservoir host for zoonotic cryptosporidia and the need for further study of prevalence, transmission and control of this pathogen in sheep.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Enfermedades de las Ovejas , Humanos , Ovinos , Animales , Cryptosporidium/genética , Criptosporidiosis/epidemiología , Prevalencia , Enfermedades de las Ovejas/epidemiología , Genotipo , Diarrea/epidemiología , Diarrea/veterinaria , Heces
5.
J Environ Manage ; 320: 115891, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36056494

RESUMEN

Doxycycline hydrochloride (DCH) could be continuously removed by Bacillus thuringiensis S622 with the in-situ biogenic manganese oxide (BioMnOx) via oxidizing/regenerating. The DCH removal rate was significantly increased by 3.01-fold/1.47-fold at high/low Mn loaded via the integration of biological (intracellular/extracellular electron transfer (IET/EET)) and abiotic process (BioMnOx, Mn(III) and •OH). BioMnOx accelerated IET via activating coenzyme Q to enhance electrons transfer (ET) from complex I to complex III, and as an alternative electron acceptor for respiration and provide another electron transfer transmission channel. Additionally, EET was also accelerated by stimulating to secrete flavins, cytochrome c (c-Cyt) and flavin bounded with c-Cyt (Flavins & Cyts). To our best knowledge, this is the first report about the role of BioMnOx on IET/EET during antibiotic biodegradation. These results suggested that Bacillus thuringiensis S622 incorporated with BioMnOx could adopt an alternative strategy to enhance DCH degradation, which may be of biogeochemical and technological significance.


Asunto(s)
Bacillus thuringiensis , Electrones , Doxiciclina , Flavinas , Compuestos de Manganeso , Oxidación-Reducción , Óxidos
6.
J Eukaryot Microbiol ; 68(2): e12839, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33448088

RESUMEN

Cryptosporidium spp., Enterocytozoon bieneusi, and Giardia duodenalis are common enteric pathogens that are capable of infecting humans and animals. Total of 1,005 fecal samples from captive pet birds were collected from seven locations in Henan Province, China. The results demonstrated that 9.9% (99/1,005) of the captive birds were infected with one of these three pathogens. Enterocytozoon bieneusi was the most prevalent species among the birds (45/1,005, 4.5%) followed by G. duodenalis (33/1,005, 3.3%) and Cryptosporidium spp. (21/1,005, 2.1%). Five Cryptosporidium species were identified, namely, C. baileyi (10), C. galli (5), C. meleagridis (4), C. andersoni (1), and C. parvum (1). Two known E. bieneusi genotypes were identified: Peru 6 (44) was identified in pigeons (34) and European turtle doves (10); whereas, the genotype PtEb I (1) was only identified in a pigeon. Only G. duodenalis assemblage E (33) was identified in some pet birds. To the best of our knowledge, this study is the first to undertake the molecular identification of G. duodenalis in birds in China. The identification of potentially zoonotic species/genotypes of the pathogens suggests that exposure to the excreta of these birds, either directly or via food and water, may pose a threat to human health.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Enterocytozoon , Giardia lamblia , Giardiasis , Microsporidiosis , Animales , Aves , China/epidemiología , Criptosporidiosis/epidemiología , Cryptosporidium/genética , Enterocytozoon/genética , Heces , Genotipo , Giardia lamblia/genética , Giardiasis/veterinaria , Microsporidiosis/epidemiología , Microsporidiosis/veterinaria
7.
BMC Vet Res ; 17(1): 332, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34663327

RESUMEN

BACKGROUND: Captive wild animals in zoos infected with Cryptosporidium spp., Giardia duodenalis, Enterocytozoon bieneusi, and Blastocystis sp. can be sources of zoonotic infections and diseases. Therefore, to investigate the distribution of these pathogens in captive wild animals of zoos in Henan, China, a total of 429 fresh fecal samples were collected from six zoos in Henan, China. The infection rates of Cryptosporidium spp., G. duodenalis, E. bieneusi, and Blastocystis sp. were determined by PCR analysis of corresponding loci. Positive results for Cryptosporidium (C. parvum and C. hominis) were subtyped based on the (gp60) gene. RESULTS: The overall prevalence was 43.1% (185/429), and the prevalence of Cryptosporidium, Giardia duodenalis, Enterocytozoon bieneusi, and Blastocystis sp. were 2.8% (12/429), 0.5% (2/429), 20.8% (89/429), and 19.1% (82/429), respectively. Five Cryptosporidium species, namely, C. hominis, C. parvum, C. muris, C. andersoni, and C. macropodum, were identified in this study. Cryptosporidium parvum was further subtyped as IIdA19G1. Two Giardia duodenalis assemblages (A and E) were also identified. A total of 20 Enterocytozoon bieneusi genotypes were detected, including 18 known (BEB6, D, HND-1, CD7, SDD1, Henan-IV, KIN-1, CHK1, Peru8, Henan-V, CHG11, CHG-1, CHS9, CHG21, Type-IV, CHC9, CM5, and CHB1) and 2 novel genotypes (CHWD1 and CHPM1). A total of nine subtypes of Blastocystis sp. (ST1, ST2, ST3, ST5, ST6, ST7, ST10, ST13, and ST14) were identified in captive wild animals in zoos in the present study. Cryptosporidium andersoni, nine Enterocytozoon bieneusi genotypes, and five Blastocystis subtypes were here first identified in new hosts. CONCLUSIONS: Our study has expanded the host ranges of these four pathogens. The data indicate that animals in zoos can commonly be infected with these four zoonotic pathogens, and animals in zoos are potential sources of zoonotic infections in humans.


Asunto(s)
Animales de Zoológico , Blastocystis/aislamiento & purificación , Cryptosporidium/aislamiento & purificación , Enterocytozoon/aislamiento & purificación , Giardia lamblia/aislamiento & purificación , Enfermedades Parasitarias en Animales/parasitología , Animales , Blastocystis/genética , China/epidemiología , Cryptosporidium/clasificación , Cryptosporidium/genética , Enterocytozoon/genética , Genotipo , Giardia lamblia/genética , Especificidad del Huésped , Enfermedades Parasitarias en Animales/epidemiología , Prevalencia
8.
Parasitol Res ; 120(9): 3035-3044, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34401942

RESUMEN

Cryptosporidium is one of the most important parasitic protozoa that can be transmitted through food and water contamination. With the increasing report of Cryptosporidium infections in wild birds, especially in herbivorous waterfowl, concerns have been raised for oocyst contamination of water and food supplies, which in turn can cause human and domestic animal infections in areas neighboring wild birds' habitats. This review discusses the epidemiology, species, and genotypes distribution of Cryptosporidium in wild birds around the world. The overall prevalence of Cryptosporidium in wild birds was calculated as 3.96% (1945/49129), with 6 Cryptosporidium species (C. andersoni, C. parvum, C. meleagridis, C. avium, C. baileyi, and C. galli) and 5 genotypes (Goose genotype I, Goose genotype II, Avian genotype I, Avian genotype III, and Avian genotype VI) reported. As wild birds mainly live in the wild, control method for the Cryptosporidium infection in wild birds is still lacking, which increases the probability of disease transmission from wild birds to humans. The main purpose of this review is to highlight the Cryptosporidium infection in wild birds and its transmission, associated risk factors, and their prevention, illustrating the necessity of multidisciplinary approaches toward screening and control of Cryptosporidium infections.


Asunto(s)
Enfermedades de las Aves , Criptosporidiosis , Cryptosporidium , Animales , Enfermedades de las Aves/epidemiología , Aves/parasitología , Criptosporidiosis/epidemiología , Cryptosporidium/genética , Genotipo , Humanos , Salud Única
9.
J Environ Manage ; 287: 112294, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33714046

RESUMEN

A novel heteroatomic N, P and S co-doped core-shell material (MnFe3O4@PZS) was synthesized by a simple polycondensation hydro-thermal method, and used as the cathode to cooperate with electron-catalysis to activate persulfate (S2O82-) (E-MnFe3O4@PZS-PDS) for tetracycline (TTC) degradation. Radical scavenger studies demonstrated that non-radicals including atomic H* and singlet oxygen (1O2) rather than sulfate and hydroxyl radicals were the crucial reactive oxygen species (ROS). Electrochemical analysis indicated that Mn doping could promote electro-catalytic process via diverting pathway from four/two-electron to one-electron to generate non-radical H*/1O2 at the cathode, including one-electron oxygen reduction reaction (1e-ORR) (O2→1O2), and one-electron hydrogen reduction reaction (1e-HRR) (H2O+e-→H∗), as evidenced by the lowest onset potential (0.072 V) together with electron transfer number (n = 1.65). Besides, the regeneration/reduction of FeⅡ/Ⅲ/MnⅡ/Ⅲ/Ⅳ and persulfate will not cause excessive consumption of electron and chemicals due to that could directly get the electron individually from the cathode and anode, and finally TTC could be completely degraded with low energy consumption (0.655 kWh m-3). This study provides new insights into the direct single electron activating PDS to produce non-radical H*/1O2 via core-shell catalytic MnFe3O4@PZS, and displays a promising application in wastewater treatment.


Asunto(s)
Electrones , Purificación del Agua , Catálisis , Electrodos , Oxidación-Reducción , Tetraciclina
10.
Parasitology ; 147(2): 160-170, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31699163

RESUMEN

Cyclospora cayetanensis, a coccidian parasite that causes protracted and relapsing gastroenteritis, has a short recorded history. At least 54 countries have documented C. cayetanensis infections and 13 of them have recorded cyclosporiasis outbreaks. Cyclospora cayetanensis infections are commonly reported in developing countries with low-socioeconomic levels or in endemic areas, although large outbreaks have also been documented in developed countries. The overall C. cayetanensis prevalence in humans worldwide is 3.55%. Among susceptible populations, the highest prevalence has been documented in immunocompetent individuals with diarrhea. Infections are markedly seasonal, occurring in the rainy season or summer. Cyclospora cayetanensis or Cyclospora-like organisms have also been detected in food, water, soil and some other animals. Detection methods based on oocyst morphology, staining and molecular testing have been developed. Treatment with trimethoprim-sulfamethoxazole (TMP-SMX) effectively cures C. cayetanensis infection, whereas ciprofloxacin is less effective than TMP-SMX, but is suitable for patients who cannot tolerate co-trimoxazole. Here, we review the biological characteristics, clinical features, epidemiology, detection methods and treatment of C. cayetanensis in humans, and assess some risk factors for infection with this pathogen.


Asunto(s)
Cyclospora/clasificación , Ciclosporiasis , Antiprotozoarios/uso terapéutico , Cyclospora/genética , Ciclosporiasis/diagnóstico , Ciclosporiasis/tratamiento farmacológico , Ciclosporiasis/epidemiología , Parasitología de Alimentos , Humanos
11.
BMC Vet Res ; 16(1): 201, 2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-32552737

RESUMEN

BACKGROUND: Enterocytozoon bieneusi, a common opportunistic fungal pathogen, has a wide range of hosts. Limited epidemiological data on E. bieneusi intestinal infections in companion animals (dogs and cats) in China exists. In this study, fecal samples (651 from dogs and 389 from cats) in Guangzhou city, Guangdong Province, China, were collected, and the ribosomal internal transcribed (ITS) spacer region from the DNA extracted from them was Polymerase Chain Reaction (PCR)-amplified and sequenced. RESULTS: Based on the sequencing data, E. bieneusi was identified in the fecal samples collected from 149 (22.9%) and 79 (20.3%) dogs and cats. Of the factors investigated, poor living conditions appeared to be the major risk factor for contracting the pathogen. Eleven E. bieneusi genotypes, six known (PtEb IX, GD1, D, CD9, EbpC, I) and five novel (designated here as GD2- GD6), were found in dogs. Eight genotypes, six known (PtEb IX, GD1, D, CD9, EbpC, Type IV) and two novel (GD2 and GC1), were identified in cats. Genotype PtEb IX was most common in both dogs and cats, followed by genotype GD1. CONCLUSIONS: Although PtEb IX was the most common E. bieneusi genotype in dogs, this is the first report of this genotype dominating in cats. The same genotype distribution of the pathogen between the two different companion animals species in the same geographic area indicates that inter-species transmission is probable. The widespread existence of zoonotic E. bieneusi genotypes (D, EbpC, Type IV) in companion animals indicates that they are potential sources of environmental contamination and infections in humans.


Asunto(s)
Enfermedades de los Gatos/epidemiología , Enfermedades de los Perros/epidemiología , Enterocytozoon/aislamiento & purificación , Microsporidiosis/veterinaria , Animales , Enfermedades de los Gatos/microbiología , Gatos , China/epidemiología , ADN de Hongos/análisis , ADN Espaciador Ribosómico , Enfermedades de los Perros/microbiología , Perros , Enterocytozoon/genética , Heces/microbiología , Femenino , Variación Genética , Genotipo , Masculino , Microsporidiosis/epidemiología , Factores de Riesgo , Zoonosis
12.
J Sep Sci ; 43(4): 719-726, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31773826

RESUMEN

We describe an optimization approach to determine simultaneously occurring chelating agents (glycine, malonic acid, citric acid, glycolic acid, lactic acid, DL-malic acid, and ethylenediaminetetraacetic acid) in an electroplating effluent using high-performance liquid chromatography. With chromatography signal area and overall resolution considered as responses, detection conditions were optimized via multiple functions combined with response surface methodology and Plackett-Burman design. Optimized detection conditions were as follows: 15 mmol/L ammonium phosphate buffer (pH 2.5), a 94:6 v/v ratio of ammonium phosphate buffer/acetonitrile, a column temperature of 23.3°C, and a mobile phase flow rate of 1 mL/min. The experimental values conformed to the predicted values and were repeatable (relative standard deviation < 6.4%) and linear (r2  > 0.991) over concentration ranges of 1-100 µmol/L. Moreover, the quantification limit (signal-to-noise ratio = 10) and the detection limit (signal-to-noise ratio = 3) ranged from 0.03 to 0.15 µmol/L and from 0.01 to 0.04 µmol/L, respectively. These results indicate that high-performance liquid chromatography coupled with statistical design may be a simple and rapid method for simultaneously determining multiple chelating agents in electroplating wastewater effectively.

13.
Ecotoxicol Environ Saf ; 190: 110124, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31884328

RESUMEN

Gram-negative Citrobacter freundii with high Pd (II) reduction capacity was isolated from electroplating wastewater, and the electron transfer involved in Pd (II) bio-reduction by C. freundii JH was investigated in phosphate buffer saline solution with sodium formate as sole electron donor under anaerobic condition. FTIR spectra indicated that hydroxyl and amine groups on cell wall participated Pd (II) bio-sorption. TEM, XRD, XPS results confirmed that Pd (0) nanoparticles (NPs) could be bio-synthesized intra/extracellularly. Meanwhile, pH turn-over were observed owing to the reduction of cytochrome c (c-Cyt) in bio-reduction process. EPR spectra indicated that free radicals (OH) was generated from high concentration Pd (II), which would cause seriously damage to cell. Despite of the lower tolerance to Pd (II), the cells at logarithmic phase exhibited higher Pd (II) reduction capacity (72.21%) than that at stationary phase (56.21%), which might be related to the relatively stronger proton motive force (PMF) created by the substrate oxidation and the electron transfer, as evidenced by electrochemical experiments (CV, DPV, amperometric I-t curves) and protein denaturalization experiments. Additionally, c-Cyt and riboflavin were confirmed to be important participants in electron transfer. Finally, a putative synthesis mechanism of Pd (0)-NPs was deduced. This study contributed to further understanding the electron transfer in Pd (II) reduction, and provided more information for the bio-synthetic of metal nanoparticles.


Asunto(s)
Citrobacter freundii/metabolismo , Paladio/metabolismo , Transporte de Electrón , Electrones , Formiatos , Nanopartículas del Metal , Oxidación-Reducción
14.
BMC Vet Res ; 15(1): 417, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31752852

RESUMEN

BACKGROUND: With worldwide distribution and importance for veterinary medicine, Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi have been found in a wide variety of vertebrate hosts. At present, few available molecular data can be used to understand the features of genetic diversity of these pathogens in areas without or less intensive farming. Dominated by grazing, Tibet is a separate geographic unit in China and yaks are in frequent contact with local herdsmen and necessary for their daily life. Therefore, to investigate the distribution of these pathogens in yaks of Tibet, 577 fecal specimens were screened using nested PCR for the presence and genotypes of the three intestinal pathogens. RESULTS: The overall prevalence of Cryptosporidium spp., G. duodenalis, and E. bieneusi were 1.4% (8/577), 1.7% (10/577), and 5.0% (29/577), respectively. Cryptosporidium andersoni (n = 7) and Cryptosporidium bovis (n = 1) were detected by sequence analysis of the SSU rRNA gene. Genotyping at the SSU rRNA and triosephosphate isomerase genes suggested that all G. duodenalis positive specimens belonged to assemblage E. Sequence analysis of the internal transcribed spacer gene identified six known E. bieneusi genotypes: BEB4 (n = 11), I (n = 6), D (n = 5), J (n = 2), CHC8 (n = 1), and BEB6 (n = 1). One subtype (A5,A4,A2,A1) for C. andersoni and three multilocus genotypes for E. bieneusi were identified by multilocus sequence typing. CONCLUSIONS: We report for the first time the status of three enteric pathogens infection simultaneously for grazing yaks in Tibet. Yaks in our study are likely to impose a low zoonotic risk for humans. The molecular epidemiology data add to our knowledge of the characteristics of distribution and transmission for these pathogens in Tibet and their zoonotic potential and public health significance.


Asunto(s)
Enfermedades de los Bovinos/parasitología , Cryptosporidium/aislamiento & purificación , Enterocytozoon/aislamiento & purificación , Giardia lamblia/aislamiento & purificación , Giardiasis/veterinaria , Microsporidiosis/veterinaria , Animales , Bovinos , Enfermedades de los Bovinos/epidemiología , Criptosporidiosis/epidemiología , Criptosporidiosis/parasitología , Cryptosporidium/genética , Enterocytozoon/genética , Giardia lamblia/genética , Giardiasis/epidemiología , Giardiasis/parasitología , Microsporidiosis/epidemiología , Microsporidiosis/microbiología , Filogenia , Especificidad de la Especie , Tibet/epidemiología
15.
BMC Vet Res ; 15(1): 101, 2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30922311

RESUMEN

BACKGROUND: Cryptosporidium spp. are important zoonotic pathogens infecting a wide range of vertebrate hosts, and causing moderate to severe diarrhea in humans. Cryptosporidium infections are frequently reported in humans and animals worldwide, but little research has been done on local pig breeds such as Tibetan pigs and Yunan Black pigs and imported pig breeds such as Landrace pigs in China. Therefore, a total of 1089 pig fecal samples from four intensive farms in four areas of China, including Tibetan pigs from Gongbujiangda County (n = 180) and Mainling County (n = 434), Tibet, Yunan Black pigs from Sanmenxia, Henan Province (n = 246), and Landrace pigs from Kaifeng, Henan Province (n = 229), and were screened for the presence of Cryptosporidium with microscopy and nested PCR amplification of the small subunit rRNA gene. RESULTS: The total infection rate of Cryptosporidium in 1089 fecal samples of three different pig breeds was 2.11% (23/1089), and the infection rates of Tibetan pigs, Yunan Black pigs, and Landrace pigs were 0.49% (3/614), 0.41% (1/246), and 8.30% (19/229), respectively. The prevalence of Cryptosporidium infection was significantly higher in weaned piglets (1-2 months) (4.36%, 21/482) than in younger and older age groups (p < 0.01). Sequence analysis of positive samples revealed that there was no mixed infection in our study population, which included 12 cases of C. suis mono-infections (52.17%, 12/23) and 11 cases of C. scrofarum mono-infections (47.83%, 11/23). C. suis was identified in one pre-weaned piglet (< 1 month) and 11 weaned piglets (1-2 months), while C. scrofarum was only detected in 10 weaned piglets (1-2 months) and one finished pig (> 2 months). CONCLUSIONS: This is the first report on the identification of Cryptosporidium spp. in Tibetan pigs, and our findings also elucidate the occurrence and distribution of Cryptosporidium in three different pig breeds in Tibet and Henan, China. More molecular epidemiological studies are required to better clarify the prevalence and public health significance of Cryptosporidium in different pigs.


Asunto(s)
Criptosporidiosis/epidemiología , Cryptosporidium/genética , Enfermedades de los Porcinos/parasitología , Factores de Edad , Animales , China/epidemiología , Criptosporidiosis/parasitología , Reacción en Cadena de la Polimerasa/veterinaria , Prevalencia , ARN Protozoario/genética , ARN Ribosómico/genética , Análisis de Secuencia de ADN , Especificidad de la Especie , Porcinos , Enfermedades de los Porcinos/epidemiología
16.
Ecotoxicol Environ Saf ; 184: 109670, 2019 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-31526924

RESUMEN

Due to the abundant binding sites and high stability, a synthesized meso-MIL-53(Al) was selected as the backbone and used for immobilizing laccase (Lac-MIL-53(Al)) to catalytically degrade of TCS. XRD, BET and FTIR analyses proved that the carboxyl groups on PTA of meso-MIL-53(Al) could provide sufficient adsorption sites for physically immobilizing laccase through hydrogen bonds and electrostatic interactions. Although the catalytic efficiency of Vmax/Km slightly decreased from 785 to 607 min-1 due to the mass transfer limitation upon immobilized, Lac-MIL-53(Al) showed high activity recovery (93.8%) and stability. The conformational analysis indicated the laccase could partially enter into the MOF by conformational changes without impairing laccase, although the laccase molecular (6.5 nm × 5.5 nm × 4.5 nm) was larger than the mesopore sizes of the MOF (4 nm). The kinetics indicated that Lac-MIL-53(Al) could remove 99.24% of TCS within 120 min due to the synergy effect of the adsorption of meso-MIL-53(Al) and catalytic degradation of laccase. Meanwhile, Lac-MIL-53(Al) could remain approximately 60% of activity for up to 8 times reuse without desorption. The GC/MS and LC/MS/MS analyses further confirmed that TCS could be transformed to 2, 4-DCP by laccase via the breakage of the ether bond, or to passivated dimers, trimers and tetramers by the self-coupling and oxidization of the phenoxyl radicals, and finally removed by precipitation. In summary, enzyme-MOF composite might be a potential strategy to control the micropollutants in the wastewater.


Asunto(s)
Aluminio/química , Enzimas Inmovilizadas/química , Lacasa/química , Estructuras Metalorgánicas/química , Triclosán/análisis , Contaminantes Químicos del Agua/análisis , Adsorción , Catálisis , Enzimas Inmovilizadas/metabolismo , Cinética , Lacasa/metabolismo , Oxidación-Reducción , Triclosán/metabolismo , Aguas Residuales/química , Contaminantes Químicos del Agua/metabolismo , Purificación del Agua/métodos
17.
Ecotoxicol Environ Saf ; 185: 109676, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31539769

RESUMEN

Although it has been proved that abiotic processes can transform tetracycline (TEC), little is known about how microbial processes may degrade TEC in aquatic environment. The objective of this study is to investigate the biodegradation pathway of TEC by strain Klebsiella sp. SQY5 and molecular mechanism of TEC resistance under the aerobic conditions. Effects of mycelium, intracellular, and extracellular enzyme on TEC degradation process were explored, suggesting that mycelium contributed the most of TEC degradation with a maximum efficiency of 58.64%. Biodegradation characteristic of TEC and its degradation products were studied. The results showed that nine possible biodegradation products were identified, and a potential biodegradation pathway was proposed including the removal of methyl, carbonyl, and amine groups. The functional genes of this bacterium were also determined by genomics, and analysis indicated that functional genes that could be relevant to hydrolysis, ring opening and oxidation played an important role in the process of TEC biodegradation. Results from this study can provide a theoretical basis for better estimating the fate, transportation, and degradation of antibiotics in aquatic environment.


Asunto(s)
Antibacterianos/análisis , Genes Bacterianos , Klebsiella/metabolismo , Tetraciclina/análisis , Contaminantes Químicos del Agua/análisis , Aerobiosis , Biodegradación Ambiental , Genómica , Klebsiella/enzimología , Klebsiella/genética , Oxidación-Reducción
18.
Ecotoxicol Environ Saf ; 171: 833-842, 2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-30660977

RESUMEN

In this study, the characteristics of biodegradation of oxytetracycline (OTC) by strain Ochrobactrum sp. KSS10 were studied under various environmental conditions, including initial OTC concentrations, variable temperature, initial pH, and diverse carbon sources. The capability of this bacterial strain for performing simultaneous OTC degradation and nitrate reduction was also explored under aerobic conditions. An OTC degradation ratio of 63.33% and a nitrate removal ratio of 98.64% were obtained within 96 h. In addition, removal of OTC and ammonia from synthetic aquaculture wastewater by a Moving Bed Biofilm Reactor (MBBR) and changes in the resistant genes of microbial communities were also investigated. The results demonstrated that the strain KSS10 was the dominant contributor in OTC and ammonia removal in the MBBR chamber. It removed almost all ammonia and approximately 76.42% of OTC. The abundances of genes tetL, tetX and intI1 were reduced by the MBBR, but the abundance of tetG and tetM were increased due to horizontal and vertical gene transfers. Such a result can potentially be used by the strain KSS10 for removing antibiotics and nitrogen from aquaculture wastewater during pre-treatment.


Asunto(s)
Antibacterianos/metabolismo , Acuicultura , Reactores Biológicos/microbiología , Ochrobactrum/metabolismo , Oxitetraciclina/metabolismo , Aguas Residuales/química , Contaminantes Químicos del Agua/metabolismo , Amoníaco/metabolismo , Biodegradación Ambiental , Biopelículas , Nitratos/metabolismo , Eliminación de Residuos Líquidos
19.
Crit Rev Biotechnol ; 38(8): 1195-1208, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29807455

RESUMEN

Antimicrobial and antibiotics resistance caused by misuse or overuse of antibiotics exposure is a growing and significant threat to global public health. The spread and horizontal transfer of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) by the selective pressure of antibiotics in an aquatic environment is a major public health issue. To develop a better understanding of potential ecological risks die to antibiotics and ARGs, this study mainly summarizes research progress about: (i) the occurrence, concentration, fate, and potential ecological effects of antibiotics and ARGs in various aquatic environments, (ii) the threat, spread, and horizontal gene transfer (HGT) of ARGs, and (iii) the relationship between antibiotics, ARGs, and ARB. Finally, this review also proposes future research direction on antibiotics and ARGs.


Asunto(s)
Antibacterianos/análisis , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Contaminantes del Agua/análisis , Animales , Bacterias/genética , Humanos , Microbiología del Agua
20.
Bioorg Med Chem Lett ; 28(17): 2920-2924, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30017318

RESUMEN

Gemcitabine (GEM) is widely used in clinical practice in the treatment of cancer and several other solid tumors. Nevertheless, the antitumor effect of GEM is partially prevented by some limitations including short half life, and lack of tumor localizing. Carboxymethyl glucan (CMG), a carboxymethylated derivative of ß-(1-3)-glucan, shows biocompatibility and biodegradability as well as a potential anticarcinogenic effect. To enhance the antiproliferative activity of GEM, four water soluble conjugates of GEM bound to CMG via diverse amino acid linkers were designed and synthesized. 1H NMR, FT IR, elementary analysis and RP-HPLC chromatography were employed to verify the correct achievement of the conjugates. In vitro release study indicated that conjugates presented slower release in physiological buffer (pH 7.4) than acidic buffer (pH 5.5) mimicking the acidic tumor microenvironment. Moreover, A549, HeLa and Caco-2 cancer cell lines were used to evaluate the in vitro cytotoxicity of conjugates and the results showed that binding GEM to CMG significantly enhanced antiproliferative activity of GEM on A549 cells. Therefore, these conjugates may be potentially useful as a delivery vehicle in cancer therapy and worthy of further study on structure-activity relationship and antiproliferative activity in vitro and in vivo, especially for lung tumor.


Asunto(s)
Antineoplásicos/farmacología , Desoxicitidina/análogos & derivados , Diseño de Fármacos , Neoplasias Pulmonares/tratamiento farmacológico , beta-Glucanos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Células CACO-2 , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Desoxicitidina/química , Desoxicitidina/farmacología , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Humanos , Neoplasias Pulmonares/patología , Estructura Molecular , Relación Estructura-Actividad , beta-Glucanos/química , Gemcitabina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA