Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(1): 668-676, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38154089

RESUMEN

Electrochemical synthesis of ammonia via the nitrate reduction reaction (NO3RR) has been intensively researched as an alternative to the traditional Haber-Bosch process. Most research focuses on the low concentration range representative of the nitrate level in wastewater, leaving the high concentration range, which exists in nuclear and fertilizer wastes, unexplored. The use of a concentrated electrolyte (≥1 M) for higher rate production is hampered by poor hydrogen transfer kinetics. Herein, we demonstrate that a cocatalytic system of Ru/Cu2O catalyst enables NO3RR at 10.0 A in 1 M nitrate electrolyte in a 16 cm2 flow electrolyzer, with 100% faradaic efficiency toward ammonia. Detailed mechanistic studies by deuterium labeling and operando Fourier transform infrared (FTIR) spectroscopy allow us to probe the hydrogen transfer rate and intermediate species on Ru/Cu2O. Ab initio molecular dynamics (AIMD) simulations reveal that adsorbed hydroxide on Ru nanoparticles increases the density of the hydrogen-bonded water network near the Cu2O surface, which promotes the hydrogen transfer rate. Our work highlights the importance of engineering synergistic interactions in cocatalysts for addressing the kinetic bottleneck in electrosynthesis.

2.
Adv Sci (Weinh) ; 11(13): e2308046, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38287886

RESUMEN

The dynamic response of single-atom catalysts to a reactive environment is an increasingly significant topic for understanding the reaction mechanism at the molecular level. In particular, single atoms may experience dynamic aggregation into clusters or nanoparticles driven by thermodynamic or kinetic factors. Herein, the inherent mechanistic nuances that determine the dynamic profile during the reaction will be uncovered, including the intrinsic stability and site-migration barrier of single atoms, external stimuli (temperature, voltage, and adsorbates), and the influence of catalyst support. Such dynamic aggregation can be beneficial or deleterious on the catalytic performance depending on the optimal initial state. Those examples will be highlighted where in situ formed clusters, rather than single atoms, serve as catalytically active sites for improved catalytic performance. This is followed by the introduction of operando techniques to understand the structural evolution. Finally, the emerging strategies via confinement and defect-engineering to regulate dynamic aggregation will be briefly discussed.

3.
Adv Mater ; : e2312182, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38335933

RESUMEN

People have been looking for an energy-efficient and sustainable method to produce future chemicals for decades. Heterogeneous single-atom catalysts (SACs) with atomic dispersion of robust, well-characterized active centers are highly desirable. In particular, correlated SACs with cooperative interaction between adjacent single atoms allow the switching of the single-site pathway to the dual or multisite pathway, thus promoting bimolecular or more complex reactions for the synthesis of fine chemicals. Herein, the structural uniqueness of correlated SACs, including the intermetal distance and electronic interaction in homo/heteronuclear metal sites is featured. Recent advances in the production methods of correlated SACs, showcasing the research status and challenges in traditional methods (such as pyrolysis, wet impregnation, and confined synthesis) for building a comprehensive multimetallic SAC library, are summarized. Emerging strategies such as process automation and continuous-flow synthesis are highlighted, minimizing the inconsistency in laboratory batch production and allowing high throughput screening and upscaling toward the next-stage chemical production by correlated SACs.

4.
Chem Sci ; 15(27): 10577-10584, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38994434

RESUMEN

Metal-catalyzed semi-hydrogenation of alkynes is an important step in organic synthesis to produce diverse chemical compounds. However, conventional noble metal catalysts often suffer from poor selectivity owing to over-hydrogenation. Here, we demonstrate a high-loading bimetallic AgCu-C3N4 single-atom catalyst (SAC) for alkyne semi-hydrogenation. The AgCu-C3N4 SACs exhibit higher activity and selectivity (99%) than their low-loading variants due to the synergistic interaction of heteronuclear Ag-Cu sites at small inter-site distances. Using a combination of techniques such as phenylacetylene-DRIFTS, H2-temperature programmed desorption and DFT calculations, we showed that the cooperative bimetallic interaction during alkyne semi-hydrogenation was achieved by isolated Ag centers as hydrogen activation sites and isolated Cu centers as alkyne activation sites. Our work highlights the importance of achieving high catalyst loading to reduce the inter-site distance in bimetallic SACs for cooperative interactions, which can potentially open new catalytic pathways for synthesizing fine chemicals and pharmaceuticals.

5.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(2): 148-157, 2024 Feb.
Artículo en Zh | MEDLINE | ID: mdl-38284256

RESUMEN

Objective To investigate the expression and clinical significance of PD-1 and its ligand PD-L1 in peripheral blood CD19+CD25+ regulatory B cells (Bregs) in patients with systemic lupus erythematosus (SLE). Methods Peripheral blood samples were collected from 50 patients and 41 healthy controls (HCs). The proportion of CD19+CD25+Bregs in peripheral blood as well as the expression of PD-1+B and PD-L1+B cells on CD19+CD25+/-B cells, were detected by flow cytometry. At the same time, clinical information, such as clinical manifestations and laboratory indexes, was collected from patients. CD4+T cells and CD19+B cells were isolated by immunomagnetic beads and co-cultured in vitro to detect the differentiation of Bregs. Results The proportion of CD19+CD25+Bregs in the peripheral blood of SLE patients was lower than that in HC, while the expression of PD-1 and PD-L1 on Bregs was higher than that in HCs. SLE patients with pleural effusion, arthritis, and elevated CRP had a higher frequency of Bregs compared to the corresponding negative group. SLE patients with decreased immunoglobulin M (IgM) and positive anti-ribonuclear protein (RNP) antibodies had a lower frequency of Bregs compared to the corresponding negative group. SLE patients with infection, fever, arthritis, and elevated immunoglobulin A (IgA) had a higher frequency of CD19+CD25+PD-1+ cells compared to the corresponding negative group. SLE patients with infection, fever, and elevated IgA had a higher frequency of CD19+CD25+PD-L1+ cells compared to the corresponding negative group. And activated CD4+T cells were beneficial to the expression of CD25 on CD19+B cells. Conclusion The peripheral blood CD19+CD25+ Bregs are decreased in SLE patients, while the expression of PD-1 and PD-L1 on cell surface is increased, which is correlated with clinical manifestations and laboratory parameters. Activation of CD4+T cells promotes the differentiation of Bregs.


Asunto(s)
Artritis , Linfocitos B Reguladores , Lupus Eritematoso Sistémico , Humanos , Receptor de Muerte Celular Programada 1/metabolismo , Antígeno B7-H1 , Linfocitos B Reguladores/metabolismo , Antígenos CD19/metabolismo , Artritis/metabolismo , Inmunoglobulina A/metabolismo , Citometría de Flujo , Linfocitos T Reguladores
6.
Nat Nanotechnol ; 19(7): 978-985, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38448520

RESUMEN

Free radicals, generally formed through the cleavage of covalent electron-pair bonds, play an important role in diverse fields ranging from synthetic chemistry to spintronics and nonlinear optics. However, the characterization and regulation of the radical state at a single-molecule level face formidable challenges. Here we present the detection and sophisticated tuning of the open-shell character of individual diradicals with a donor-acceptor structure via a sensitive single-molecule electrical approach. The radical is sandwiched between nanogapped graphene electrodes via covalent amide bonds to construct stable graphene-molecule-graphene single-molecule junctions. We measure the electrical conductance as a function of temperature and track the evolution of the closed-shell and open-shell electronic structures in real time, the open-shell triplet state being stabilized with increasing temperature. Furthermore, we tune the spin states by external stimuli, such as electrical and magnetic fields, and extract thermodynamic and kinetic parameters of the transition between closed-shell and open-shell states. Our findings provide insights into the evolution of single-molecule radicals under external stimuli, which may proof instrumental for the development of functional quantum spin-based molecular devices.

7.
Adv Rheumatol ; 63: 51, 2023. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1519970

RESUMEN

Abstract Background The defect of B cell self-tolerance and the continuous antigen presentation by T cells (TCs) mediated by autoreactive B cells (BCs) play a key role in the occurrence and development of systemic lupus erythematosus (SLE). PD-1/PD-L1 signaling axis negatively regulates the immune response of TCs after activation and maintains immune tolerance. However, the effect of PD-1/PD-L1 signaling axis on the interaction between CD19+B/CD4+TCs in the peripheral blood of patients with SLE has not been studied in detail. Methods PD-1/PD-L1 and Ki-67 levels in peripheral blood (PB) of 50 SLE patients and 41 healthy controls (HCs) were detected through flow cytometry, and then the expression of PD-1+/−cells and PD-L1+/−cells Ki-67 was further analyzed. CD19+B/CD4+TCs were separated for cell culture and the supernatant was collected to determine proliferation and differentiation of TCs. IL-10 and IFN-γ secretion in the supernatant was also determined using ELISA. Results The PD-1, PD-L1, and Ki-67 levels on CD19+B/CD4+TCs in patients with SLE were higher than HCs. In CD19+B/CD4+TCs of SLE patients, the proliferative activity of PD-L1+ cells was higher than that of PD-L1− cells, and the proliferative activity of PD-1+ cells was higher than that of PD-1− cells. In the system co-culturing CD19+B/CD4+TCs from HCs/SLE patients, activated BCs promoted TCs proliferation and PD-L1 expression among TCs. Addition of anti-PD-L1 to co-culture system restored the proliferation of TCs, and inhibited IL-10/IFN-γ level. The addition of anti-PD-L1 to co-culture system also restored Tfh and downregulated Treg in HCs. Conclusions Axis of PD-1/PD-L1 on CD19+B/CD4+TCs in PB of SLE patients is abnormal, and cell proliferation is abnormal. In CD19+B/CD4+TCs of SLE patients, the proliferative activity of PD-L1+ and PD-1+ cells compared with PD-L1− and PD-1− cells in SLE patients, respectively. CD19+B/CD4+TCs in SLE patients can interact through PD-1/PD-L1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA