Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Biochem ; 689: 115497, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38461948

RESUMEN

The naturally occurring peptides and digested proteins of fetal versus adult bovine serum were compared by LC-ESI-MS/MS after correction against noise from blank injections and random MS/MS spectra as statistical controls. Serum peptides were extracted by differential precipitation with mixtures of acetonitrile and water. Serum proteins were separated by partition chromatography over quaternary amine resin followed by tryptic digestion. The rigorous X!TANDEM goodness of fit algorithm that has a low error rate as demonstrated by low FDR q-values (q ≤ 0.01) showed qualitative and quantitative agreement with the SEQUEST cross correlation algorithm on 12,052 protein gene symbols. Tryptic digestion provided a quantitative identification of the serum proteins where observation frequency reflected known high abundance. In contrast, the naturally occurring peptides reflected the cleavage of common serum proteins such as C4A, C3, FGB, HPX, A2M but also proteins in lower concentration such as F13A1, IK, collagens and protocadherins. Proteins associated with cellular growth and development such as actins (ACT), ribosomal proteins like Ribosomal protein S6 (RPS6), synthetic enzymes and extracellular matrix factors were enriched in fetal calf serum. In contrast to the large literature from cord blood, IgG light chains were absent from fetal serum as observed by LC-ESI-MS/MS and confirmed by ELISA.


Asunto(s)
Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Péptidos/química , Proteínas Sanguíneas/análisis , Digestión
2.
Clin Proteomics ; 20(1): 17, 2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37031181

RESUMEN

INTRODUCTION: Proteomic analysis of human plasma by LC-ESI-MS/MS has discovered a limited number of new cellular protein biomarkers that may be confirmed by independent biochemical methods. Analysis of COVID-19 plasma has indicated the re-purposing of known biomarkers that might be used as prognostic markers of COVID-19 infection. However, multiple molecular approaches have previously indicated that the SARS-COV2 infection cycle is linked to the biology of mitochondria and that the response to infections may involve the action of heme containing oxidative enzymes. METHODS: Human plasma from COVID-19 and ICU-ARDS was analyzed by classical analytical biochemistry techniques and classical frequency-based statistical approaches to look for prognostic markers of severe COVID-19 lung damage. Plasma proteins from COVID-19 and ICU-ARDS were identified and enumerated versus the controls of normal human plasma (NHP) by LC-ESI-MS/MS. The observation frequency of proteins detected in COVID-19 and ICU-ARDS patients were compared to normal human plasma, alongside random and noise MS/MS spectra controls, using the Chi Square (χ2) distribution. RESULTS: PCR showed the presence of MT-ND1 DNA in the plasma of COVID-19, ICU-ARDS, as well as normal human plasma. Mitochondrial proteins such as MRPL, L2HGDH, ATP, CYB, CYTB, CYP, NDUF and others, were increased in COVID-19 and ICU-ARDS plasma. The apparent activity of the cytochrome components were tested alongside NHP by dot blotting on PVDF against a purified cytochrome c standard preparation for H2O2 dependent reaction with luminol as measured by enhanced chemiluminescence (ECL) that showed increased activity in COVID-19 and ICU-ARDS patients. DISCUSSION: The results from PCR, LC-ESI-MS/MS of tryptic peptides, and cytochrome ECL assays confirmed that mitochondrial components were present in the plasma, in agreement with the established central role of the mitochondria in SARS-COV-2 biology. The cytochrome activity assay showed that there was the equivalent of at least nanogram amounts of cytochrome(s) in the plasma sample that should be clearly detectable by LC-ESI-MS/MS. The release of the luminol oxidase activity from cells into plasma forms the basis of a simple and rapid test for the severity of cell damage and lung injury in COVID-19 infection and ICU-ARDS.

3.
Anal Biochem ; 655: 114845, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35970411

RESUMEN

Fetal serum supports the immortal growth of mammalian cell lines in culture while adult serum leads to the terminal differentiation and death of cells in culture. Many of the proteins in fetal serum that support the indefinite division and growth of cancerous cell lines remain obscure. The peptides and proteins of fetal versus adult serum were analyzed by liquid chromatography, nano electrospray ionization and tandem mass spectrometry (LC-ESI-MS/MS). Three batches of fetal serum contained the Alpha Fetoprotein marker while adult serum batches did not. Insulin (INS), and insulin-like growth factor (ILGF), fibroblast growth factor (FGF), epidermal growth factor (EGF) and platelet derived growth factor (PDGF) were increased in fetal serum. New fetal growth factors including MEGF, HDGFRP and PSIP1 and soluble growth receptors such as TNFR, EGFR, NTRK2 and THRA were discovered. Addition of insulin or the homeotic transcription factor PSIP1, also referred to as Lens Epithelium Derived Growth Factor (LEDGF), partially restored the rounded phenotype of rapidly dividing cells but was not as effective as fetal serum. Thus, a new growth factor in fetal serum, LEDGF/PSIP1, was directly observed by tandem mass spectrometry and confirmed by add back experiments to cell culture media alongside insulin.


Asunto(s)
Insulinas , Espectrometría de Masas en Tándem , Animales , Factor de Crecimiento Epidérmico/farmacología , Péptidos y Proteínas de Señalización Intercelular , Mamíferos/metabolismo , Factores de Transcripción/genética
4.
Clin Proteomics ; 16: 43, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31889940

RESUMEN

BACKGROUND: There is a need to demonstrate a proof of principle that proteomics has the capacity to analyze plasma from breast cancer versus other diseases and controls in a multisite clinical trial design. The peptides or proteins that show a high observation frequency, and/or precursor intensity, specific to breast cancer plasma might be discovered by comparison to other diseases and matched controls. The endogenous tryptic peptides of breast cancer plasma were compared to ovarian cancer, female normal, sepsis, heart attack, Alzheimer's and multiple sclerosis along with the institution-matched normal and control samples collected directly onto ice. METHODS: Endogenous tryptic peptides were extracted from individual breast cancer and control EDTA plasma samples in a step gradient of acetonitrile, and collected over preparative C18 for LC-ESI-MS/MS with a set of LTQ XL linear quadrupole ion traps working together in parallel to randomly and independently sample clinical populations. The MS/MS spectra were fit to fully tryptic peptides or phosphopeptides within proteins using the X!TANDEM algorithm. The protein observation frequency was counted using the SEQUEST algorithm after selecting the single best charge state and peptide sequence for each MS/MS spectra. The observation frequency was subsequently tested by Chi Square analysis. The log10 precursor intensity was compared by ANOVA in the R statistical system. RESULTS: Peptides and/or phosphopeptides of common plasma proteins such as APOE, C4A, C4B, C3, APOA1, APOC2, APOC4, ITIH3 and ITIH4 showed increased observation frequency and/or precursor intensity in breast cancer. Many cellular proteins also showed large changes in frequency by Chi Square (χ2 > 100, p < 0.0001) in the breast cancer samples such as CPEB1, LTBP4, HIF-1A, IGHE, RAB44, NEFM, C19orf82, SLC35B1, 1D12A, C8orf34, HIF1A, OCLN, EYA1, HLA-DRB1, LARS, PTPDC1, WWC1, ZNF562, PTMA, MGAT1, NDUFA1, NOGOC, OR1E1, OR1E2, CFI, HSA12, GCSH, ELTD1, TBX15, NR2C2, FLJ00045, PDLIM1, GALNT9, ASH2L, PPFIBP1, LRRC4B, SLCO3A1, BHMT2, CS, FAM188B2, LGALS7, SAT2, SFRS8, SLC22A12, WNT9B, SLC2A4, ZNF101, WT1, CCDC47, ERLIN1, SPFH1, EID2, THOC1, DDX47, MREG, PTPRE, EMILIN1, DKFZp779G1236 and MAP3K8 among others. The protein gene symbols with large Chi Square values were significantly enriched in proteins that showed a complex set of previously established functional and structural relationships by STRING analysis. An increase in mean precursor intensity of peptides was observed for QSER1 as well as SLC35B1, IQCJ-SCHIP1, MREG, BHMT2, LGALS7, THOC1, ANXA4, DHDDS, SAT2, PTMA and FYCO1 among others. In contrast, the QSER1 peptide QPKVKAEPPPK was apparently specific to ovarian cancer. CONCLUSION: There was striking agreement between the breast cancer plasma peptides and proteins discovered by LC-ESI-MS/MS with previous biomarkers from tumors, cells lines or body fluids by genetic or biochemical methods. The results indicate that variation in plasma peptides from breast cancer versus ovarian cancer may be directly discovered by LC-ESI-MS/MS that will be a powerful tool for clinical research. It may be possible to use a battery of sensitive and robust linear quadrupole ion traps for random and independent sampling of plasma from a multisite clinical trial.

5.
Clin Proteomics ; 15: 41, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30598658

RESUMEN

BACKGROUND: It may be possible to discover new diagnostic or therapeutic peptides or proteins from blood plasma by using liquid chromatography and tandem mass spectrometry to identify, quantify and compare the peptides cleaved ex vivo from different clinical populations. The endogenous tryptic peptides of ovarian cancer plasma were compared to breast cancer and female cancer normal controls, other diseases with their matched or normal controls, plus ice cold plasma to control for pre-analytical variation. METHODS: The endogenous tryptic peptides or tryptic phospho peptides (i.e. without exogenous digestion) were analyzed from 200 µl of EDTA plasma. The plasma peptides were extracted by a step gradient of organic/water with differential centrifugation, dried, and collected over C18 for analytical HPLC nano electrospray ionization and tandem mass spectrometry (LC-ESI-MS/MS) with a linear quadrupole ion trap. The endogenous peptides of ovarian cancer were compared to multiple disease and normal samples from different institutions alongside ice cold controls. Peptides were randomly and independently sampled by LC-ESI-MS/MS. Precursor ions from peptides > E4 counts were identified by the SEQUEST and X!TANDEM algorithms, filtered in SQL Server, before testing of frequency counts by Chi Square (χ2), for analysis with the STRING algorithm, and comparison of precursor intensity by ANOVA in the R statistical system with the Tukey-Kramer Honestly Significant Difference (HSD) test. RESULTS: Peptides and/or phosphopeptides of common plasma proteins such as HPR, HP, HPX, and SERPINA1 showed increased observation frequency and/or precursor intensity in ovarian cancer. Many cellular proteins showed large changes in frequency by Chi Square (χ2 > 60, p < 0.0001) in the ovarian cancer samples such as ZNF91, ZNF254, F13A1, LOC102723511, ZNF253, QSER1, P4HA1, GPC6, LMNB2, PYGB, NBR1, CCNI2, LOC101930455, TRPM5, IGSF1, ITGB1, CHD6, SIRT1, NEFM, SKOR2, SUPT20HL1, PLCE1, CCDC148, CPSF3, MORN3, NMI, XTP11, LOC101927572, SMC5, SEMA6B, LOXL3, SEZ6L2, and DHCR24. The protein gene symbols with large Chi Square values were significantly enriched in proteins that showed a complex set of previously established functional and structural relationships by STRING analysis. Analysis of the frequently observed proteins by ANOVA confirmed increases in mean precursor intensity in ZFN91, TRPM5, SIRT1, CHD6, RIMS1, LOC101930455 (XP_005275896), CCDC37 and GIMAP4 between ovarian cancer versus normal female and other diseases or controls by the Tukey-Kramer HSD test. CONCLUSION: Here we show that separation of endogenous peptides with a step gradient of organic/water and differential centrifugation followed by random and independent sampling by LC-ESI-MS/MS with analysis of peptide frequency and intensity by SQL Server and R revealed significant difference in the ex vivo cleavage of peptides between ovarian cancer and other clinical treatments. There was striking agreement between the proteins discovered from cancer plasma versus previous biomarkers discovered in tumors by genetic or biochemical methods. The results indicate that variation in plasma proteins from ovarian cancer may be directly discovered by LC-ESI-MS/MS that will be a powerful tool for clinical research.

6.
Clin Proteomics ; 15: 39, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30519149

RESUMEN

BACKGROUND: It may be possible to discover new diagnostic or therapeutic peptides or proteins from blood plasma using LC-ESI-MS/MS to identify, with a linear quadrupole ion trap to identify, quantify and compare the statistical distributions of peptides cleaved ex vivo from plasma samples from different clinical populations. METHODS: A systematic method for the organic fractionation of plasma peptides was applied to identify and quantify the endogenous tryptic peptides from human plasma from multiple institutions by C18 HPLC followed nano electrospray ionization and tandem mass spectrometry (LC-ESI-MS/MS) with a linear quadrupole ion trap. The endogenous tryptic peptides, or tryptic phospho peptides (i.e. without exogenous digestion), were extracted in a mixture of organic solvent and water, dried and collected by preparative C18. The tryptic peptides from 6 institutions with 12 different disease and normal EDTA plasma populations, alongside ice cold controls for pre-analytical variation, were characterized by mass spectrometry. Each patient plasma was precipitated in 90% acetonitrile and the endogenous tryptic peptides extracted by a stepwise gradient of increasing water and then formic acid resulting in 10 sub-fractions. The fractionated peptides were manually collected over preparative C18 and injected for 1508 LC-ESI-MS/MS experiments analyzed in SQL Server R. RESULTS: Peptides that were cleaved in human plasma by a tryptic activity ex vivo provided convenient and sensitive access to most human proteins in plasma that show differences in the frequency or intensity of proteins observed across populations that may have clinical significance. Combination of step wise organic extraction of 200 µL of plasma with nano electrospray resulted in the confident identification and quantification ~ 14,000 gene symbols by X!TANDEM that is the largest number of blood proteins identified to date and shows that you can monitor the ex vivo proteolysis of most human proteins, including interleukins, from blood. A total of 15,968,550 MS/MS spectra ≥ E4 intensity counts were correlated by the SEQUEST and X!TANDEM algorithms to a federated library of 157,478 protein sequences that were filtered for best charge state (2+ or 3+) and peptide sequence in SQL Server resulting in 1,916,672 distinct best-fit peptide correlations for analysis with the R statistical system. SEQUEST identified some 140,054 protein accessions, or some ~ 26,000 gene symbols, proteins or loci, with at least 5 independent correlations. The X!TANDEM algorithm made at least 5 best fit correlations to more than 14,000 protein gene symbols with p-values and FDR corrected q-values of ~ 0.001 or less. Log10 peptide intensity values showed a Gaussian distribution from E8 to E4 arbitrary counts by quantile plot, and significant variation in average precursor intensity across the disease and controls treatments by ANOVA with means compared by the Tukey-Kramer test. STRING analysis of the top 2000 gene symbols showed a tight association of cellular proteins that were apparently present in the plasma as protein complexes with related cellular components, molecular functions and biological processes. CONCLUSIONS: The random and independent sampling of pre-fractionated blood peptides by LC-ESI-MS/MS with SQL Server-R analysis revealed the largest plasma proteome to date and was a practical method to quantify and compare the frequency or log10 intensity of individual proteins cleaved ex vivo across populations of plasma samples from multiple clinical locations to discover treatment-specific variation using classical statistics suitable for clinical science. It was possible to identify and quantify nearly all human proteins from EDTA plasma and compare the results of thousands of LC-ESI-MS/MS experiments from multiple clinical populations using standard database methods in SQL Server and classical statistical strategies in the R data analysis system.

7.
J Am Soc Mass Spectrom ; 32(1): 301-306, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33196170

RESUMEN

The alkaline phosphatase-streptavidin enzyme amplification conjugate (APSA) was diluted and quantified to the equivalent of one enzyme molecule injected on column by monitoring the production of excess adenosine from adenosine monophosphate (AMP) using sensitive and selective enzyme-linked mass spectrometric assay. The APSA enzyme conjugate has a mass of about 195 kDa and catalyzed the production of millions of enzyme products over the course of incubation that may be sensitively quantified by liquid chromatography, electrospray ionization, and mass spectrometry. APSA enzyme conjugate from fg/mL to ag/mL alongside 0 g/mL (control) was incubated with the substrate 1 mM AMP for 2 h in free solution before collecting a 1 µL of sample of the enzyme product adenosine for injection and analysis by LC-MS. The enzyme product adenosine showed a Gaussian distribution after log10 transformation. The safe limit of detection and quantification was approximately 250 zg of APSA enzyme conjugate injected on column. A linear signal with acceptable error was observed at the mass of the enzyme product adenosine from 10 to 10000 zg of APSA enzyme conjugate injected, compared to controls without enzyme. It was possible to make a linear and Gaussian measurement to the single molecule range of the universal APSA enzyme amplification conjugate per micro liter injected with approximately 10% error. This study describes the first linear and Gaussian quantification of enzyme product from the equivalent of one enzyme conjugate molecule injected onto LC-MS for analysis.


Asunto(s)
Fosfatasa Alcalina/análisis , Cromatografía Liquida/métodos , Imagen Individual de Molécula/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Adenosina Monofosfato/metabolismo , Fosfatasa Alcalina/química , Enzimas/análisis , Límite de Detección , Distribución Normal , Imagen Individual de Molécula/estadística & datos numéricos , Estreptavidina/análisis , Estreptavidina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA