RESUMEN
There is a significant difference in prognosis and response to chemotherapy between basal and classical subtypes of pancreatic ductal adenocarcinoma (PDAC). Further biomarkers are required to identify subtypes of PDAC. We selected candidate biomarkers via review articles. Correlations between these candidate markers and the PDAC molecular subtype gene sets were analyzed using bioinformatics, confirming the biomarkers for identifying classical and basal subtypes. Subsequently, 298 PDAC patients were included, and their tumor tissues were immunohistochemically stratified using these biomarkers. Survival data underwent analysis, including Cox proportional hazards modeling. Our results indicate that the pairwise and triple combinations of KRT5/KRT17/S100A2 exhibit a higher correlation coefficient with the basal-like subtype gene set, whereas the corresponding combinations of GATA6/HNF4A/TFF1 show a higher correlation with the classical subtype gene set. Whether analyzing unmatched or propensity-matched data, the overall survival time was significantly shorter for the basal subtype compared with the classical subtype (p < .001), with basal subtype patients also facing a higher risk of mortality (HR = 4.017, 95% CI 2.675-6.032, p < .001). In conclusion, the combined expression of KRT5, KRT17, and S100A2, in both pairwise and triple combinations, independently predicts shorter overall survival in PDAC patients and likely identifies the basal subtype. Similarly, the combined expression of GATA6, HNF4A, and TFF1, in the same manner, may indicate the classical subtype. In our study, the combined application of established biomarkers offers valuable insights for the prognostic evaluation of PDAC patients.
Asunto(s)
Biomarcadores de Tumor , Carcinoma Ductal Pancreático , Queratina-17 , Queratina-5 , Neoplasias Pancreáticas , Proteínas S100 , Humanos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/mortalidad , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Masculino , Femenino , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Persona de Mediana Edad , Proteínas S100/genética , Proteínas S100/metabolismo , Queratina-5/genética , Queratina-5/metabolismo , Anciano , Queratina-17/genética , Queratina-17/metabolismo , Pronóstico , Factor de Transcripción GATA6/genética , Factor de Transcripción GATA6/metabolismo , Regulación Neoplásica de la Expresión Génica , Adulto , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Factores QuimiotácticosRESUMEN
While strategies such as chemotherapy and immunotherapy have become the first-line standard therapies for patients with advanced or metastatic cancer, acquired resistance is still inevitable in most cases. The introduction of antibodyâdrug conjugates (ADCs) provides a novel alternative. ADCs are a new class of anticancer drugs comprising the coupling of antitumor mAbs with cytotoxic drugs. Compared with chemotherapeutic drugs, ADCs have the advantages of good tolerance, accurate target recognition, and small effects on noncancerous cells. ADCs occupy an increasingly important position in the therapeutic field. Currently, there are 13 Food and Drug Administration (FDA)âapproved ADCs and more than 100 ADC drugs at different stages of clinical trials. This review briefly describes the efficacy and safety of FDA-approved ADCs, and discusses the related problems and challenges to provide a reference for clinical work.
Asunto(s)
Antineoplásicos , Inmunoconjugados , Neoplasias , Estados Unidos , Humanos , Inmunoconjugados/uso terapéutico , United States Food and Drug Administration , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Resultado del TratamientoRESUMEN
Suaeda salsa L. is a typical halophyte with high value as a vegetable. Here, we report a 447.98 Mb, chromosomal-level genome of S. salsa, assembled into nine pseudomolecules (contig N50 = 1.36 Mb) and annotated with 27,927 annotated protein-coding genes. Most of the assembled S. salsa genome, 58.03%, consists of transposable elements. Some gene families including HKT1, NHX, SOS and CASP related to salt resistance were significantly amplified. We also observed expansion of genes encoding protein that bind the trace elements Zn, Fe, Cu and Mn, and genes related to flavonoid and α-linolenic acid metabolism. Many expanded genes were significantly up-regulated under salinity, which might have contributed to the acquisition of salt tolerance in S. salsa. Transcriptomic data showed that high salinity markedly up-regulated salt-resistance related genes, compared to low salinity. Abundant metabolic pathways of secondary metabolites including flavonoid, unsaturated fatty acids and selenocompound were enriched, which indicates that the species is a nutrient-rich vegetable. Particularly worth mentioning is that there was no significant difference in the numbers of cis-elements in the promoters of salt-related and randomly selected genes in S. salsa when compared with Arabidopsis thaliana, which may affirm that plant salt tolerance is a quantitative rather than a qualitative trait in terms of promoter evolution. Our findings provide deep insight into the adaptation of halophytes to salinity from a genetic evolution perspective.
RESUMEN
N6-methyladenosine (m6A) is a prevalent mRNA modification known for its implications in various cancer types, yet its role in chromophobe renal cell carcinoma (chRCC) remains largely unexplored. In this study, we performed m6A-SEAL-seq and RNA-seq analyses on tissues from three chRCC subjects, aiming to uncover m6A alterations in chRCC. Our findings revealed reduced expression levels of four m6A regulators in chRCC tissues and highlighted differences in m6A levels compared to normal tissues. Furthermore, we identified specific genes and cancer-related pathways affected by these differences, including notable candidates like NOTCH1 and FGFR1, implicated in chRCC development. Additionally, we developed a predictive model based on the expression level of m6A associated genes, demonstrating promising prognostic capabilities for patient survival prediction. Overall, our study provides valuable insights into the role of m6A in chRCC and its potential as a prognostic indicator.
Asunto(s)
Adenosina , Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/mortalidad , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/metabolismo , Neoplasias Renales/mortalidad , Neoplasias Renales/genética , Neoplasias Renales/patología , Neoplasias Renales/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Pronóstico , Regulación Neoplásica de la Expresión Génica , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Masculino , Femenino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Perfilación de la Expresión GénicaRESUMEN
Myocardial fibrosis (MF) is the characteristic pathological feature of various cardiovascular diseases that lead to heart failure (HF) or even fatal outcomes. Alternatively, activated macrophages are involved in the development of fibrosis and tissue remodeling. Although the receptor for advanced glycation end products (RAGE) is involved in MF, its potential role in regulating macrophage function in cardiac fibrosis has not been fully investigated. We aimed to determine the role of macrophage RAGE in transverse aortic constriction (TAC)-induced MF. In this study, we found that RAGE expression was markedly increased in the infiltrated alternatively activated macrophages within mice hearts after TAC. RAGE knockout mice showed less infiltration of alternatively activated macrophages and attenuated cardiac hypertrophy and fibrosis compared to the wild-type mice. Our data suggest that mice with macrophage-specific genetic deletion of RAGE were protected from interstitial fibrosis and cardiac dysfunction when subjected to pressure overload, which led to a decreased proportion of alternatively activated macrophages in heart tissues. Our in vitro experiments demonstrated that RAGE deficiency inhibited the differentiation into alternatively activated macrophages by suppressing autophagy activation. In the co-culture system, in vitro polarization of RAW264.7 macrophages toward an alternatively activated phenotype stimulated the expression of α-smooth muscle actin and collagen in cardiac fibroblasts. However, the knockdown of RAGE and inhibition of autophagy in macrophages showed reduced fibroblast-to-myofibroblast transition (FMT). Collectively, our results suggest that RAGE plays an important role in the recruitment and activation of alternatively activated macrophages by regulating autophagy, which contributes to MF. Thus, blockage of RAGE signaling may be an attractive therapeutic target for the treatment of hypertensive heart disease.
Asunto(s)
Cardiopatías , Insuficiencia Cardíaca , Animales , Ratones , Autofagia , Fibrosis , Cardiopatías/metabolismo , Insuficiencia Cardíaca/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Miocardio/metabolismo , Receptor para Productos Finales de Glicación Avanzada/genética , Receptor para Productos Finales de Glicación Avanzada/metabolismoRESUMEN
Pancreatic ductal adenocarcinoma (PDAC) is characterized by poor prognosis primarily due to metastasis. Accumulating evidence suggests that PLEK2 acts as an oncogene in various tumors. This study aimed to investigate the effects of PLEK2 on PDAC. Expression analysis of PLEK2 was conducted using qRT-PCR, Western blot, and immunohistochemistry in PDAC. Wound healing and transwell assays were performed to evaluate the impact of PLEK2 on cell migration and invasion. A xenograft tumor model was employed to assess the in vivo proliferation of PLEK2. Additionally, the downstream pathway of PLEK2 was analyzed through RNA-seq and confirmed by Western blot analysis. The results demonstrated the upregulation of PLEK2 expression in tumor specimens. High PLEK2 expression was significantly associated with poor overall survival and advanced TNM stages. Correlation analyses revealed positive correlations between PLEK2 and TGF-ß, EGFR, and MMP1. Wound healing and transwell assays demonstrated that PLEK2 promoted PDAC cell migration and invasion, potentially through the activation of the epithelial-to-mesenchymal transition process. The in vivo experiment further confirmed that PLEK2 knockdown suppressed tumor growth. RNA-seq analysis revealed PLEK2's regulation of MMP1 and activation of p-ERK and p-STAT3, which were verified by Western blot analysis. Overall, the present study suggests that PLEK2 may play a tumor-promoting role in PDAC. These findings provide valuable insights into the molecular mechanisms of pancreatic cancer and highlight the potential of PLEK2 as a therapeutic target.
RESUMEN
BACKGROUND: Allergic asthma is characterized by airway hyperresponsiveness triggered by inhaled allergens. Type 2 innate lymphoid cells (ILC2s) have been demonstrated to play a crucial role in promoting airway inflammation through the secretion of type 2 effector cytokines. However, the mechanisms underlying the functions of lung ILC2s remain unclear. METHODS: In this study, we investigated the expression of IRF3 in ILC2s in both human patients and mouse models of asthma. We utilized IRF3-deficient mice to assess the impact of IRF3 deficiency on ILC2 function in a model of IL33-induced asthma. Additionally, we explored the mechanisms underlying IRF3-mediated regulation of ILC2s, focusing on the involvement of the transcription factor Gata3. RESULTS: Our findings revealed elevated expression of IRF3 in ILC2s of patients and mice with asthma, suggesting a potential role for IRF3 in the pathogenesis of allergic asthma. Furthermore, we demonstrated that IRF3 deficiency impairedthe expansion and function of ILC2s in IL33-induced asthma, highlighting the importance of IRF3 in regulating ILC2-mediated responses. Importantly, we showed that the regulation of ILC2s by IRF3 was independent of Th2 cells and mediated by the transcription factor Gata3. CONCLUSION: This study identifies IRF3 as a novel regulator of lung ILC2s and suggests its potential as a promising immunotherapeutic target for allergic asthma. These findings shed light on the intricate mechanisms underlying asthma pathogenesis and provide insights into potential strategies for the development of targeted therapies for this prevalent airway disease.
RESUMEN
Cardiorenal syndrome type 4 (CRS4), a progressive deterioration of cardiac function secondary to chronic kidney disease (CKD), is a leading cause of death in patients with CKD. In this study, we aimed to investigate the cardioprotective effect of emodin on CRS4. C57BL/6 mice with 5/6 nephrectomy and HL-1 cells stimulated with 5% CKD mouse serum were used for in vivo and in vitro experiments. To assess the cardioprotective potential of emodin, we employed a comprehensive array of methodologies, including echocardiography, tissue staining, immunofluorescence staining, biochemical detection, flow cytometry, real-time quantitative PCR, and western blot analysis. Our results showed that emodin exerted protective effects on the function and structure of the residual kidney. Emodin also reduced pathologic changes in the cardiac morphology and function of these mice. These effects may have been related to emodin-mediated suppression of reactive oxygen species production, reduction of mitochondrial oxidative damage, and increase of oxidative metabolism via restoration of PGC1α expression and that of its target genes. In contrast, inhibition of PGC1α expression significantly reversed emodin-mediated cardioprotection in vivo. In conclusion, emodin protects the heart from 5/6 nephrectomy-induced mitochondrial damage via activation of the PGC1α signaling. The findings obtained in our study can be used to develop effective therapeutic strategies for patients with CRS4.
Asunto(s)
Síndrome Cardiorrenal , Emodina , Insuficiencia Renal Crónica , Humanos , Ratones , Animales , Emodina/farmacología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Apoptosis , Ratones Endogámicos C57BLRESUMEN
A novel molecularly imprinted nanomaterial (Eu (BTC)-MPS@MIP) was synthesized on the surface of silanized europium-based metal-organic frameworks (Eu (BTC)-MPS) using 1, 3, 5-benzotrioic acid (H3BTC) as a ligand. The resulting Eu (BTC)-MPS@MIP was applied to constructing a smartphone sensing platform for the sensitive and selective detection of clothianidin (CLT) in vegetables. The synthesized Eu (BTC)-MPS@MIP demonstrated the successful formation of a typical core-shell structure featuring a shell thickness of approximately 70 - 80 nm. The developed sensing platform based on Eu (BTC)-MPS@MIP exhibited sensitivity in CLT detection with a detection limit of 4 µg/L and a linear response in the range 0.01 - 10 mg/L at excitation and emission wavelengths of 365 nm and 617 nm, respectively. The fluorescence sensing platform displayed excellent specificity for CLT detection, as evidenced by a high imprinting factor of 3.1. This specificity is primarily attributed to the recognition sites in the molecularly imprinted polymer (MIP) layer. When applied to spiked vegetable samples, the recovery of CLT ranged from 78.9 to 102.0%, with relative standard deviation (RSD) values falling between 2.2 and 6.2%. The quenching mechanism of Eu (BTC)-MPS@MIP toward CLT can be attributed to the inner filter effect (IFE), resulting from the optimal spectral overlap between the absorption spectrum of CLT and the excitation spectra of Eu (BTC)-MPS@MIP. The proposed method has the potential for extension to the detection of other pesticides by replacing the MIP recognition probes.
RESUMEN
Mpox (formerly monkeypox) is a zoonotic disease caused by monkeypox virus (MPXV), which, like smallpox, is characterised by skin rashes. While the world is currently grappling with the coronavirus disease 2019 pandemic, the appearance of MPXV has presented a global threat and raised concerns worldwide. Since May 2022, MPXV has spread rapidly in non-endemic mpox areas. As of 27 June 2023, the virus has spread to more than 112 countries and regions, with over 88,060 laboratory-confirmed cases and 147 deaths. Thus, measures to control the mpox epidemic are urgently needed. As the principal methods for identifying and monitoring mpox, laboratory detection techniques play an important role in mpox diagnosis. This review summarises the currently-used laboratory techniques for MPXV detection, discusses progress in improving these methods, and compares the benefits and limitations of various diagnostic detection methods. Currently, nucleic acid amplification tests, such as the polymerase chain reaction, are the most commonly used. Immunological methods have also been applied to diagnose the disease, which can help us discover new features of MPXV, improve diagnostic accuracy, track epidemic trends, and guide future prevention and control strategies, which are also vital for controlling mpox epidemics. This review provides a resource for the scientific community and should stimulate more research and development in alternative diagnostics to be applied to this and future public health crises.
Asunto(s)
COVID-19 , Mpox , Animales , COVID-19/diagnóstico , COVID-19/epidemiología , Mpox/diagnóstico , Mpox/epidemiología , Pandemias , Reacción en Cadena de la Polimerasa , ZoonosisRESUMEN
Advanced glycation end products (AGEs) have been identified to transduce fibrogenic signals via inducing the activation of their receptor (RAGE)-mediated pathway. Recently, disrupting AGE-RAGE interaction has become a promising therapeutic strategy for chronic heart failure (CHF). Endothelial-to-mesenchymal transition (EndMT) is close to the cardiac fibrosis pathological process. Our previous studies have demonstrated that knockout RAGE suppressed the autophagy-mediated EndMT, and thus alleviated cardiac fibrosis. Plantamajoside (PMS) is the major bioactive compound of Plantago Asiatica, and its activity of anti-fibrosis has been documented in many reports. However, its effect on CHF and the underlying mechanism remains elusive. Thus, we tried to elucidate the protective role of PMS in CHF from the viewpoint of the AGEs/RAGE/autophagy/EndMT axis. Herein, PMS was found to attenuate cardiac fibrosis and dysfunction, suppress EndMT, reduce autophagy levels and serum levels of AGEs, yet did not affect the expression of RAGE in CHF mice. Mechanically, PMS possibly binds to the V-domain of RAGE, which is similar to the interaction between AGEs and RAGE. Importantly, this competitive binding disturbed AGEs-induced the RAGE-autophagy-EndMT pathway in vitro. Collectively, our results indicated that PMS might exert an anti-cardiac fibrosis effect by specifically binding RAGE to suppress the AGEs-activated RAGE/autophagy/EndMT pathway.
Asunto(s)
Catecoles , Productos Finales de Glicación Avanzada , Animales , Ratones , Autofagia , Catecoles/farmacología , Fibrosis , Productos Finales de Glicación Avanzada/metabolismo , Receptor para Productos Finales de Glicación Avanzada , Transición Epitelial-MesenquimalRESUMEN
Atherosclerosis(AS) is the key pathological basis of coronary heart disease(CHD), and lipid infiltration is a classical theory to explain the pathological mechanism of AS. The theory highlights that the occurrence and development of AS are closely related to abnormal lipid metabolism, with the essence of the pathological reaction caused by the invasion of lipids into arterial intima from plasma. Phlegm and blood stasis are physiologically homologous and subject to pathological co-existence. Phlegm-blood stasis correlation is the basic theory to explain the pathogenesis characteristics of CHD and has important guiding significance for revealing the mecha-nism of lipid infiltration of CHD. Phlegm is the pathological product of abnormal metabolism of Qi, blood, and body fluid, and a gene-ral summary of a series of abnormally expressed lipid substances. Among them, turbid phlegm invades the heart vessels, gradually accumulates, and condenses to achieve the qualitative change from "invisible pathogen" to "tangible pathogen", which corresponds to the mechanism of lipid migration and deposition in the intima of blood vessels, and is the starting factor of the disease. Blood stasis is the continuous development of phlegm, and it is a result of pathological states such as decreased blood fluidity, increased blood coagulation, and abnormal rheology. The fact that blood stasis caused by phlegm accords with the pathological process of "lipid abnormality-circulatory disturbance" and is the central link of the disease. Phlegm and blood stasis aggravate each other and lead to indissoluble cementation. The phlegm-blood stasis combination serves as common pathogen to trigger the disease, which is the inevitable outcome of the disease. Based on the phlegm-blood stasis correlation theory, the simultaneous treatment of phlegm and blood stasis is established. It is found that this therapy can simultaneously regulate blood lipid, reduce blood viscosity, and improve blood circulation, which can fundamentally cut off the biological material basis of the reciprocal transformation between phlegm and blood stasis, thus exerting a significant curative effect.
Asunto(s)
Aterosclerosis , Enfermedad Coronaria , Humanos , Medicina Tradicional China , Moco , LípidosRESUMEN
Lysine acetylation is a reversible post-translational modification (PTM) involved in multiple physiological functions. Recent studies have demonstrated the involvement of protein acetylation in modulating the biology of Schwann cells (SCs) and regeneration of the peripheral nervous system (PNS). However, the mechanisms underlying these processes remain partially understood. Here, we characterized the acetylome of the mouse sciatic nerve (SN) and investigated the cellular distribution of acetylated proteins. We identified 483 acetylated proteins containing 1442 acetylation modification sites in the SN of adult C57BL/6 mice. Bioinformatics suggested that these acetylated SN proteins were mainly located in the myelin sheath, mitochondrial inner membrane, and cytoskeleton, and highlighted the significant differences between the mouse SN and brain acetylome. Manual annotation further indicated that most acetylated proteins (> 45%) were associated with mitochondria, energy metabolism, and cytoskeleton and cell adhesion. We verified three newly discovered acetylation-modified proteins, including neurofilament light polypeptide (NEFL), neurofilament medium/high polypeptide (NFM/H), and periaxin (PRX). Immunofluorescence illustrated that the acetylated proteins, including acetylated alpha-tubulin, were mainly co-localized with S100-positive SCs. Herein, we provided a comprehensive acetylome for the mouse SN and demonstrated that acetylated proteins in the SN were predominantly located in SCs. These results will extend our understanding and promote further study of the role and mechanism of protein acetylation in SC development and PNS regeneration.
Asunto(s)
Lisina , Procesamiento Proteico-Postraduccional , Acetilación , Animales , Lisina/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteoma/metabolismo , Nervio Ciático/metabolismoRESUMEN
Heparanase (HPSE) is an endo-ß-glucuronidase involved in extracellular matrix remodeling in rapidly healing tissues, most cancers and inflammation, and viral infection. Its importance as a therapeutic target warrants further study, but such is hampered by a lack of research tools. To expand the toolkits for probing HPSE enzymatic activity, we report the design of a substrate scaffold for HPSE comprised of a disaccharide substrate appended with a linker, capable of carrying cargo until being cleaved by HPSE. Here exemplified as a fluorogenic, coumarin-based imaging probe, this scaffold can potentially expand the availability of HPSE-responsive imaging or drug delivery tools using a variety of imaging moieties or other cargo. We show that electronic tuning of the scaffold provides a robust response to HPSE while simplifying the structural requirements of the attached cargo. Molecular docking and modeling suggest a productive probe/HPSE binding mode. These results further support the hypothesis that the reactivity of these HPSE-responsive probes is predominantly influenced by the electron density of the aglycone. This universal HPSE-activatable scaffold will greatly facilitate future development of HPSE-responsive probes and drugs.
Asunto(s)
Matriz Extracelular , Glucuronidasa , Preparaciones Farmacéuticas , Simulación del Acoplamiento Molecular , Matriz Extracelular/metabolismo , Glucuronidasa/metabolismoRESUMEN
BACKGROUND: Artificial intelligence and computer vision have revolutionized laparoscopic surgical video analysis. However, there is no multi-center study focused on deep learning-based laparoscopic cholecystectomy phases recognizing. This work aims to apply artificial intelligence in recognizing and analyzing phases in laparoscopic cholecystectomy videos from multiple centers. METHODS: This observational cohort-study included 163 laparoscopic cholecystectomy videos collected from four medical centers. Videos were labeled by surgeons and a deep-learning model was developed based on 90 videos. Thereafter, the performance of the model was tested in additional ten videos by comparing it with the annotated ground truth of the surgeon. Deep-learning models were trained to identify laparoscopic cholecystectomy phases. The performance of models was measured using precision, recall, F1 score, and overall accuracy. With a high overall accuracy of the model, additional 63 videos as an analysis set were analyzed by the model to identify different phases. RESULTS: Mean concordance correlation coefficient for annotations of the surgeons across all operative phases was 92.38%. Also, the overall phase recognition accuracy of laparoscopic cholecystectomy by the model was 91.05%. In the analysis set, there was an average surgery time of 2195 ± 896 s, with a huge individual variance of different surgical phases. Notably, laparoscopic cholecystectomy in acute cholecystitis cases had prolonged overall durations, and the surgeon would spend more time in mobilizing the hepatocystic triangle phase. CONCLUSION: A deep-learning model based on multiple centers data can identify phases of laparoscopic cholecystectomy with a high degree of accuracy. With continued refinements, artificial intelligence could be utilized in huge data surgery analysis to achieve clinically relevant future applications.
Asunto(s)
Inteligencia Artificial , Colecistectomía Laparoscópica , HumanosRESUMEN
BACKGROUND: Due to varied surgical skills and the lack of an efficient rating system, we developed Surgesture based on elementary functional surgical gestures performed by surgeons, which could serve as objective metrics to evaluate surgical performance in laparoscopic cholecystectomy (LC). METHODS: We defined 14 LC basic Surgestures. Four surgeons annotated Surgestures among LC videos performed by experts and novices. The counts, durations, average action time, and dissection/exposure ratio (D/E ratio) of LC Surgestures were compared. The phase of mobilizing hepatocystic triangle (MHT) was extracted for skill assessment by three professors using a modified Global Operative Assessment of Laparoscopic Skills (mGOALS). RESULTS: The novice operation time was significantly longer than the expert operation time (58.12 ± 19.23 min vs. 26.66 ± 8.00 min, P < 0.001), particularly during MHT phase. Novices had significantly more Surgestures than experts in both hands (P < 0.05). The left hand and inefficient Surgesture of novices were dramatically more than those of experts (P < 0.05). The experts demonstrated a significantly higher D/E ratio of duration than novices (0.79 ± 0.37 vs. 2.84 ± 1.98, P < 0.001). The counts and time pattern map of LC Surgestures during MHT demonstrated that novices tended to complete LC with more types of Surgestures and spent more time exposing the surgical scene. The performance metrics of LC Surgesture had significant but weak associations with each aspect of mGOALS. CONCLUSION: The newly constructed Surgestures could serve as accessible and quantifiable metrics for demonstrating the operative pattern and distinguishing surgeons with various skills. The association between Surgestures and Global Rating Scale laid the foundation for establishing a bridge to automated objective surgical skill evaluation.
Asunto(s)
Colecistectomía Laparoscópica , Laparoscopía , Cirujanos , Competencia Clínica , Humanos , Laparoscopía/métodos , Tempo OperativoRESUMEN
Positron emission tomography (PET) imaging of apoptosis can noninvasively detect cell death in vivo and assist in monitoring tumor response to treatment in patients. While extensive efforts have been devoted to addressing this important need, no apoptosis PET imaging agents have yet been approved for clinical use. This study reports an improved 18F-labeled caspase-sensitive nanoaggregation tracer ([18F]-C-SNAT4) for PET imaging of tumor response to chemo- and immunotherapies in preclinical mouse models. METHODS: We rationally designed and synthesized a new PET tracer [18F]-C-SNAT4 to detect cell death both in vitro and in vivo. In vitro radiotracer uptake studies were performed on drug-sensitive and -resistant NSCLC cell lines (NCI-H460 and NCI-H1299, respectively) treated with cisplatin at different doses. In vivo therapy response monitoring by [18F]-C-SNAT4 PET imaging was evaluated with two treatment modalities-chemotherapy and immunotherapy in two tumor xenografts in mice. Radiotracer uptake in the tumors was validated ex vivo using γ-counting and cleaved caspase-3 immunofluorescence. RESULTS: This [18F]-C-SNAT4 PET tracer was facilely synthesized and displayed improved serum stability profiles. [18F]-C-SNAT4 cellular update was elevated in NCI-H460 cells in a time- and dose-dependent manner, which correlated well with cell death. A significant increase in [18F]-C-SNAT4 uptake was measured in NCI-H460 tumor xenografts in mice. In contrast, a rapid clearance of [18F]-C-SNAT4 was observed in drug-resistant NCI-H1299 in vitro and in tumor xenografts. Moreover, in BALB/C mice bearing murine colon cancer CT26 tumor xenografts receiving checkpoint inhibitors, [18F]-C-SNAT4 showed its ability for monitoring immunotherapy-induced apoptosis and reporting treatment-responding mice from non-responding. CONCLUSION: The uptake of [18F]-C-SNAT4 in tumors received chemotherapy and immunotherapy is positively correlated with the tumor apoptotic level and the treatment efficacy. [18F]-C-SNAT4 PET imaging can monitor tumor response to two different treatment modalities and predict the therapeutic efficacy in preclinical mouse models.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Caspasa 3 , Línea Celular Tumoral , Humanos , Inmunoterapia , Ratones , Ratones Endogámicos BALB C , Tomografía de Emisión de PositronesRESUMEN
Liver regeneration involves not only hepatocyte replication but progenitor aggregation and scarring. Partial hepatectomy (PH), an established model for liver regeneration, reactivates transforming growth factor-ß (TGF-ß) signaling. Hepatic stellate cells (HSCs) are primarily responding cells for TGF-ß and resident in stem cell niche. In the current study, PH mice were treated with SB-431542, an inhibitor of TGF-ß Type I receptor, aiming to address the role of TGF-ß signaling on the fate determination of HSCs during liver regeneration. After PH, control mice exhibited HSCs activation, progenitor cells accumulation, and a fraction of HSCs acquired the phenotype of hepatocyte or cholangiocyte. Blocking TGF-ß signaling delayed proliferation, impaired progenitor response, and scarring repair. In SB-431542 group, merely no HSCs were found coexpressed progenitor makers, such as SOX9 and AFP. Inhibition of TGF-ß pathway disturbed the epithelial-mesenchymal transitions and diminished the nuclear accumulation of ß-catenin as well as the expression of cytochrome P450 2E1 in HSC during liver regeneration. We identify a key role of TGF-ß signaling on promoting HSC transition, which subsequently becomes progenitor for generating liver epithelial cells after PH. This process might interact with an acknowledged stem cell function signaling, Wnt/ß-catenin.
Asunto(s)
Células Estrelladas Hepáticas/citología , Hepatocitos/citología , Regeneración Hepática/fisiología , Células Madre/citología , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Benzamidas/farmacología , Proliferación Celular/efectos de los fármacos , Citocromo P-450 CYP2E1/biosíntesis , Dioxoles/farmacología , Transición Epitelial-Mesenquimal , Hepatectomía , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Factores de Crecimiento Transformadores beta/antagonistas & inhibidores , Factor de Transcripción SOX9/metabolismo , Transducción de Señal/fisiología , alfa-Fetoproteínas/metabolismo , beta Catenina/metabolismoRESUMEN
"Smart" biomaterials that are responsive to physiological or biochemical stimuli have found many biomedical applications for tissue engineering, therapeutics, and molecular imaging. In this work, we describe in situ polymerization of activatable biorthogonal small molecules in response to a reducing environment change in vivo. We designed a carbohydrate linker- and cyanobenzothiazole-cysteine condensation reaction-based small molecule scaffold that can undergo rapid condensation reaction upon physiochemical changes (such as a reducing environment) to form polymers (pseudopolysaccharide). The fluorescent and photoacoustic properties of a fluorophore-tagged condensation scaffold before and after the transformation have been examined with a dual-modality optical imaging method. These results confirmed the in situ polymerization of this probe after both local and systemic administration in living mice.
Asunto(s)
Benzotiazoles/química , Carbohidratos/química , Cisteína/química , Colorantes Fluorescentes/química , Nitrilos/química , Imagen Óptica , Polimerizacion , Animales , Línea Celular Tumoral , Femenino , Colorantes Fluorescentes/síntesis química , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Estructura Molecular , Neoplasias Experimentales/diagnóstico por imagen , Oxidación-ReducciónRESUMEN
The pre-targeted imaging of enzyme activity has not been reported, likely owing to the lack of a mechanism to retain the injected substrate in the first step for subsequent labeling. Herein, we report the use of two bioorthogonal reactions-the condensation reaction of aromatic nitriles and aminothiols and the inverse-electron demand Diels-Alder reaction between tetrazine and trans-cyclooctene (TCO)-to develop a novel strategy for pre-targeted imaging of the activity of proteases. The substrate probe (TCO-C-SNAT4) can be selectively activated by an enzyme target (e.g. caspase-3/7), which triggers macrocyclization and subsequent inâ situ self-assembly into nanoaggregates retained at the target site. The tetrazine-imaging tag conjugate labels TCO in the nanoaggregates to generate selective signal retention for imaging inâ vitro, in cells, and in mice. Owing to the decoupling of enzyme activation and imaging tag immobilization, TCO-C-SNAT4 can be repeatedly injected to generate and accumulate more TCO-nanoaggregates for click labeling.