Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(23): 11285-11290, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31113881

RESUMEN

AUF1 promotes rapid decay of mRNAs containing 3' untranslated region (3'UTR) AU-rich elements (AREs). AUF1 depletion in mice accelerates muscle loss and causes limb girdle muscular dystrophy. Here, we demonstrate that the selective, targeted degradation by AUF1 of key muscle stem cell fate-determining checkpoint mRNAs regulates each stage of muscle development and regeneration by reprogramming each myogenic stage. Skeletal muscle stem (satellite) cell explants show that Auf1 transcription is activated with satellite cell activation by stem cell regulatory factor CTCF. AUF1 then targets checkpoint ARE-mRNAs for degradation, progressively reprogramming the transcriptome through each stage of myogenesis. Transition steps in myogenesis, from stem cell proliferation to differentiation to muscle fiber development, are each controlled by fate-determining checkpoint mRNAs, which, surprisingly, were found to be controlled in their expression by AUF1-targeted mRNA decay. Checkpoint mRNAs targeted by AUF1 include Twist1, decay of which promotes myoblast development; CyclinD1, decay of which blocks myoblast proliferation and initiates differentiation; and RGS5, decay of which activates Sonic Hedgehog (SHH) pathway-mediated differentiation of mature myotubes. AUF1 therefore orchestrates muscle stem cell proliferation, self-renewal, myoblast differentiation, and ultimately formation of muscle fibers through targeted, staged mRNA decay.


Asunto(s)
Ribonucleoproteína Nuclear Heterogénea D0/metabolismo , Desarrollo de Músculos/fisiología , ARN Mensajero/metabolismo , Regeneración/fisiología , Regiones no Traducidas 3'/fisiología , Elementos Ricos en Adenilato y Uridilato/fisiología , Animales , Diferenciación Celular/fisiología , Línea Celular , Proliferación Celular/fisiología , Femenino , Proteínas Hedgehog/metabolismo , Masculino , Ratones , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Proteínas RGS/metabolismo , Estabilidad del ARN/fisiología , Células Madre/metabolismo
2.
Proc Natl Acad Sci U S A ; 114(12): 3186-3191, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28270607

RESUMEN

The ovary contains oocytes within immature (primordial) follicles that are fixed in number at birth. Activation of follicles within this fixed pool causes an irreversible decline in reproductive capacity, known as the ovarian reserve, until menopause. Premenopausal women undergoing commonly used genotoxic (DNA-damaging) chemotherapy experience an accelerated loss of the ovarian reserve, leading to subfertility and infertility. Therefore, there is considerable interest but little effective progress in preserving ovarian function during chemotherapy. Here we show that blocking the kinase mammalian/mechanistic target of rapamycin (mTOR) with clinically available small-molecule inhibitors preserves ovarian function and fertility during chemotherapy. Using a clinically relevant mouse model of chemotherapy-induced gonadotoxicity by cyclophosphamide, and inhibition of mTOR complex 1 (mTORC1) with the clinically approved drug everolimus (RAD001) or inhibition of mTORC1/2 with the experimental drug INK128, we show that mTOR inhibition preserves the ovarian reserve, primordial follicle counts, serum anti-Mullerian hormone levels (a rigorous measure of the ovarian reserve), and fertility. Chemotherapy-treated animals had significantly fewer offspring compared with all other treatment groups, whereas cotreatment with mTOR inhibitors preserved normal fertility. Inhibition of mTORC1 or mTORC1/2 within ovaries was achieved during chemotherapy cotreatment, concomitant with preservation of primordial follicle counts. Importantly, our findings indicate that as little as a two- to fourfold reduction in mTOR activity preserves ovarian function and normal birth numbers. As everolimus is approved for tamoxifen-resistant or relapsing estrogen receptor-positive breast cancer, these findings represent a potentially effective and readily accessible pharmacologic approach to fertility preservation during conventional chemotherapy.


Asunto(s)
Antineoplásicos/efectos adversos , Preservación de la Fertilidad , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 2 de la Rapamicina/antagonistas & inhibidores , Ovario/efectos de los fármacos , Ovario/fisiología , Animales , Hormona Antimülleriana/sangre , Antineoplásicos/farmacología , Biomarcadores , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Inmunohistoquímica , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Ratones , Folículo Ovárico/efectos de los fármacos , Folículo Ovárico/metabolismo , Inhibidores de Proteínas Quinasas/farmacología
3.
Cell Rep ; 34(9): 108777, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33657370

RESUMEN

Adult mammalian central nervous system (CNS) trauma interrupts neural networks and, because axonal regeneration is minimal, neurological deficits persist. Repair via axonal growth is limited by extracellular inhibitors and cell-autonomous factors. Based on results from a screen in vitro, we evaluate nearly 400 genes through a large-scale in vivo regeneration screen. Suppression of 40 genes using viral-driven short hairpin RNAs (shRNAs) promotes retinal ganglion cell (RGC) axon regeneration after optic nerve crush (ONC), and most are validated by separate CRISPR-Cas9 editing experiments. Expression of these axon-regeneration-suppressing genes is not significantly altered by axotomy. Among regeneration-limiting genes, loss of the interleukin 22 (IL-22) cytokine allows an early, yet transient, inflammatory response in the retina after injury. Reduced IL-22 drives concurrent activation of signal transducer and activator of transcription 3 (Stat3) and dual leucine zipper kinase (DLK) pathways and upregulation of multiple neuron-intrinsic regeneration-associated genes (RAGs). Including IL-22, our screen identifies dozens of genes that limit CNS regeneration. Suppression of these genes in the context of axonal damage could support improved neural repair.


Asunto(s)
Regeneración Nerviosa/genética , Neurogénesis/genética , Traumatismos del Nervio Óptico/genética , Nervio Óptico/metabolismo , Animales , Axones/metabolismo , Axones/patología , Sistemas CRISPR-Cas , Dependovirus/genética , Femenino , Edición Génica , Regulación de la Expresión Génica , Estudios de Asociación Genética , Células HEK293 , Humanos , Interleucinas/genética , Interleucinas/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Nervio Óptico/patología , Nervio Óptico/fisiopatología , Traumatismos del Nervio Óptico/metabolismo , Traumatismos del Nervio Óptico/patología , Traumatismos del Nervio Óptico/fisiopatología , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Interleucina-22
4.
Cell Rep ; 23(2): 415-428, 2018 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-29642001

RESUMEN

Axonal regrowth is crucial for recovery from CNS injury but is severely restricted in adult mammals. We used a genome-wide loss-of-function screen for factors limiting axonal regeneration from cerebral cortical neurons in vitro. Knockdown of 16,007 individual genes identified 580 significant phenotypes. These molecules share no significant overlap with those suggested by previous expression profiles. There is enrichment for genes in pathways related to transport, receptor binding, and cytokine signaling, including Socs4 and Ship2. Among transport-regulating proteins, Rab GTPases are prominent. In vivo assessment with C. elegans validates a cell-autonomous restriction of regeneration by Rab27. Mice lacking Rab27b show enhanced retinal ganglion cell axon regeneration after optic nerve crush and greater motor function and raphespinal sprouting after spinal cord trauma. Thus, a comprehensive functional screen reveals multiple pathways restricting axonal regeneration and neurological recovery after injury.


Asunto(s)
Axones/metabolismo , Sistema Nervioso Central/fisiología , Genoma , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Femenino , Redes Reguladoras de Genes , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Regeneración Nerviosa , Nervio Óptico/fisiología , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Recuperación de la Función , Células Ganglionares de la Retina/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Proteínas Supresoras de la Señalización de Citocinas/antagonistas & inhibidores , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Proteínas de Unión al GTP rab/antagonistas & inhibidores , Proteínas de Unión al GTP rab/deficiencia , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
5.
Cell Rep ; 16(5): 1379-1390, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27452471

RESUMEN

Following skeletal muscle injury, muscle stem cells (satellite cells) are activated, proliferate, and differentiate to form myofibers. We show that mRNA-decay protein AUF1 regulates satellite cell function through targeted degradation of specific mRNAs containing 3' AU-rich elements (AREs). auf1(-/-) mice undergo accelerated skeletal muscle wasting with age and impaired skeletal muscle repair following injury. Satellite cell mRNA analysis and regeneration studies demonstrate that auf1(-/-) satellite cell self-renewal is impaired due to increased stability and overexpression of ARE-mRNAs, including cell-autonomous overexpression of matrix metalloprotease MMP9. Secreted MMP9 degrades the skeletal muscle matrix, preventing satellite-cell-mediated regeneration and return to quiescence. Blocking MMP9 activity in auf1(-/-) mice restores skeletal muscle repair and maintenance of the satellite cell population. Control of ARE-mRNA decay by AUF1 represents a mechanism for adult stem cell regulation and is implicated in human skeletal muscle wasting diseases.


Asunto(s)
Células Madre Adultas/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo D/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Estabilidad del ARN/fisiología , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Regiones no Traducidas 3'/genética , Animales , Femenino , Ribonucleoproteína Nuclear Heterogénea D0 , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Regeneración/fisiología
6.
Wiley Interdiscip Rev RNA ; 5(4): 549-64, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24687816

RESUMEN

Regulated messenger RNA (mRNA) decay is an essential mechanism that governs proper control of gene expression. In fact, many of the most physiologically potent proteins are encoded by short-lived mRNAs, many of which contain AU-rich elements (AREs) in their 3'-untranslated region (3'-UTR). AREs target mRNAs for post-transcriptional regulation, generally rapid decay, but also stabilization and translation inhibition. AREs control mRNA turnover and translation activities through association with trans-acting RNA-binding proteins that display high affinity for these AU-rich regulatory elements. AU-rich element RNA-binding protein (AUF1), also known as heterogeneous nuclear ribonucleoprotein D (HNRNPD), is an extensively studied AU-rich binding protein (AUBP). AUF1 has been shown to regulate ARE-mRNA turnover, primarily functioning to promote rapid ARE-mRNA degradation. In certain cellular contexts, AUF1 has also been shown to regulate gene expression at the translational and even the transcriptional level. AUF1 comprises a family of four related protein isoforms derived from a common pre-mRNA by differential exon splicing. AUF1 isoforms have been shown to display multiple and distinct functions that include the ability to target ARE-mRNA stability or decay, and transcriptional activation of certain genes that is controlled by their differential subcellular locations, expression levels, and post-translational modifications. AUF1 has been implicated in controlling a variety of physiological functions through its ability to regulate the expression of numerous mRNAs containing 3'-UTR AREs, thereby coordinating functionally related pathways. This review highlights the physiological functions of AUF1-mediated regulation of mRNA and gene expression, and the consequences of deficient AUF1 levels in different physiological settings.


Asunto(s)
Elementos Ricos en Adenilato y Uridilato , Ribonucleoproteína Heterogénea-Nuclear Grupo D/metabolismo , ARN Mensajero/metabolismo , Animales , Ribonucleoproteína Nuclear Heterogénea D0 , Humanos , ARN Mensajero/genética
7.
Mol Cell Biol ; 34(16): 3106-19, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24891619

RESUMEN

The mammalian RNA-binding protein AUF1 (AU-binding factor 1, also known as heterogeneous nuclear ribonucleoprotein D [hnRNP D]) binds to numerous mRNAs and influences their posttranscriptional fate. Given that many AUF1 target mRNAs encode muscle-specific factors, we investigated the function of AUF1 in skeletal muscle differentiation. In mouse C2C12 myocytes, where AUF1 levels rise at the onset of myogenesis and remain elevated throughout myocyte differentiation into myotubes, RNP immunoprecipitation (RIP) analysis indicated that AUF1 binds prominently to Mef2c (myocyte enhancer factor 2c) mRNA, which encodes the key myogenic transcription factor MEF2C. By performing mRNA half-life measurements and polysome distribution analysis, we found that AUF1 associated with the 3' untranslated region (UTR) of Mef2c mRNA and promoted MEF2C translation without affecting Mef2c mRNA stability. In addition, AUF1 promoted Mef2c gene transcription via a lesser-known role of AUF1 in transcriptional regulation. Importantly, lowering AUF1 delayed myogenesis, while ectopically restoring MEF2C expression levels partially rescued the impairment of myogenesis seen after reducing AUF1 levels. We propose that MEF2C is a key effector of the myogenesis program promoted by AUF1.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo D/fisiología , Desarrollo de Músculos/genética , Músculo Esquelético/embriología , Proteínas de Unión al ARN/fisiología , Regiones no Traducidas 3'/genética , Animales , Diferenciación Celular/genética , Línea Celular , Regulación del Desarrollo de la Expresión Génica , Ribonucleoproteína Nuclear Heterogénea D0 , Ribonucleoproteína Heterogénea-Nuclear Grupo D/genética , Factores de Transcripción MEF2/biosíntesis , Factores de Transcripción MEF2/genética , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Unión Proteica/genética , Biosíntesis de Proteínas/genética , Interferencia de ARN , ARN Mensajero/genética , ARN Interferente Pequeño , Proteínas de Unión al ARN/genética , Regeneración/genética , Transcripción Genética/genética , Activación Transcripcional/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA