Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Membranes (Basel) ; 13(8)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37623764

RESUMEN

Medical product contamination has become a threatening issue against human health, which is the main reason why protective nonwoven fabrics have gained considerable attention. In the present, there is a soaring number of studies on establishing protection systems with nonwoven composites via needle punch. Meanwhile, the disadvantages of composites, such as poor mechanical performance and texture, impose restrictions. Hence, in this study, an eco-friendly method composed of needling, hot pressing, and lamination is applied to produce water-resistant, windproof, and antimicrobial Tencel/low-melting-point polyester-thermoplastic polyurethane/Triclosan (Tencel/LMPET-TPU/TCL) laminated membranes. Field-emission scanning electron microscope (SEM) images and FTIR show needle-punched Tencel/LMPET membranes successfully coated with TPU/TCL laminated membranes, thereby extensively improving nonwoven membranes in terms of water-resistant, windproof, and antimicrobial attributes. Parameters including needle punch depth, content of LMPET fibers, and concentration of TCL are changed during the production. Specifically, Tencel/LMPET-TPU/TCL-0.1 laminated nonwovens acquire good water resistance (100 kPa), outstanding windproof performance (<0.1 cm3/cm2/s), and good antimicrobial ability against Escherichia coli and Staphylococcus aureus. Made with a green production process that is pollution-free, the proposed products are windproof, water resistant, and antimicrobial, which ensures promising uses in the medical and protective textile fields.

2.
Gels ; 9(12)2023 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-38131973

RESUMEN

The hard-healing chronic wounds of diabetics are still one of the most intractable problems in clinical skin injury repair. Wound microenvironments directly affect wound healing speed, but conventional dressings exhibit limited efficacy in regulating the wound microenvironment and facilitating healing. To address this serious issue, we designed a thermo-sensitive drug-controlled hydrogel with wound self-adjusting effects, consisting of a sodium alginate (SA), Antheraeapernyi silk gland protein (ASGP) and poly(N-isopropylacrylamide) (PNIPAM) for a self-adjusting microenvironment, resulting in an intelligent releasing drug which promotes skin regeneration. PNIPAM has a benign temperature-sensitive effect. The contraction, drugs and water molecules expulsion of hydrogel were generated upon surpassing lower critical solution temperatures, which made the hydrogel system have smart drug release properties. The addition of ASGP further improves the biocompatibility and endows the thermo-sensitive drug-controlled hydrogel with adhesion. Additionally, in vitro assays demonstrate that the thermo-sensitive drug-controlled hydrogels have good biocompatibility, including the ability to promote the adhesion and proliferation of human skin fibroblast cells. This work proposes an approach for smart drug-controlled hydrogels with a thermo response to promote wound healing by self-adjusting the wound microenvironment.

3.
Gels ; 8(7)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35877483

RESUMEN

The Antheraea Pernyi silk gland protein originates from natural organisms and synthesized by tussah silk glands and has widely potential biomaterial applications due to the superior biocompatibility. This study investigates the Antheraea Pernyi silk gland protein-based drug-loaded bio-hydrogels for bioengineered tissue fabricated by using an eco-friendly method without the harsh extracting process and the usage of toxic chemicals. The drug-loaded bio-hydrogels exhibited a porous structure and interconnected pore walls. The swelling ratio and water absorption of drug-loaded bio-hydrogels were, respectively, above 95% and 1.5 × 103%. The cumulative release of drug loaded hydrogels all reached more than 90% within 4 h, and this indicates the potential of drug-loaded hydrogels as future drug-carrying biomaterials. RSC96 Schwann cells cultured on drug-loaded hydrogels for 72 h under cell culture medium show no toxic effects and more pro-proliferative effects. The results suggest the suitability of drug-loaded bio-hydrogels as natural biopolymer for the potential in vitro RSC96 cell culture platform and other biomaterial applications.

4.
Gels ; 9(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36661772

RESUMEN

To improve the versatility of the sodium alginate-loaded bio-hydrogels, Antheraea pernyi silk gland protein/sodium alginate drug-loaded hydrogels were prepared by using an eco-friendly multiple network cross-link technology. Fourier transform infrared (FT-IR) spectroscopy and UV-Vis spectrophotometer were used separately to evaluate the chemical structure and drug release behavior of drug-loaded hydrogels. The antibacterial drug carrier gels were evaluated by using inhibition zone test against the S. aureus and E. coli. The CCK-8 assay was used to assess the biocompatibility of drug loaded hydrogels. The FT-IR results showed that there was a strong interaction within the drug loaded hydrogels, and the ASGP was beneficial to enhance the interaction within the drug loaded hydrogels. UV-Vis spectrophotometer results indicated the cumulative release reached 80% within 400 min. Antibacterial bio-hydrogels had a good antibacterial property, especially the antibacterial bio-hydrogels with bacitracin exhibits superior to other antibacterial agents. The drug-loaded bio-hydrogels exhibited the adhesion and proliferation of RSC96 cells and perfected biocompatibility. This provides a new idea for further research and development of tissue-friendly drug-loaded biomaterials.

5.
Nanomaterials (Basel) ; 12(17)2022 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-36080108

RESUMEN

One-way water transport is a predominant feature of comfortable textiles used in daily life. However, shortcomings related to the textiles include their poor breathability and durability. In this study, low-cost and eco-friendly PLA/low-melt (polylactic acid) LMPLA-thermoplastic polyurethane (TPU) membranes were fabricated through a needle punch/hot press and electrospinning method. The micro-/nano-channels, used for the first time, endowed the composite membranes with robust, breathable, moisture-permeable, and abrasion-resistant performance. By varying the nano- layer thickness, the resulting 16-40 µm membranes exhibited excellent one-way water transport, robust breathability and moisture permeability, and good abrasion resistance. Nano-layer thickness was found to be a critical performance factor, balancing comfort and protection. These results may be useful for developing low-cost, eco-friendly, and versatile protective products for medical application.

6.
Polymers (Basel) ; 14(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35012130

RESUMEN

Antheraea pernyi silk fibroin (ASF)-based nanofibers have wide potential for biomaterial applications due to superior biocompatibility. It is not clear whether the ASF-based nanofibers scaffold can be used as an in vitro cancer cell culture platform. In the current study, we fabricated novel ASF-based thermoresponsive hydrogel nanofibers by aqueous electrospinning for colon cancer (LoVo) cells culture. ASF was reacted with allyl glycidyl ether (AGE) for the preparation of allyl silk fibroin (ASF-AGE), which provided the possibility of copolymerization with allyl monomer. The investigation of ASF-AGE structure by 1H NMR revealed that reactive allyl groups were successfully linked with ASF. ASF-based thermoresponsive hydrogel nanofibers (p (ASF-AGE-NIPAAm)) were successfully manufactured by aqueous electrospinning with the polymerization of ASF and N-isopropylacrylamide (NIPAAm). The p (ASF-AGE-NIPAAm) spinning solution showed good spinnability with the increase of polymerization time, and uniform nanofibers were formed at the polymerization time of 360 min. The obtained hydrogel nanofibers exhibited good thermoresponsive that the LCST was similar with PNIPAAm at about 32 °C, and good degradability in protease XIV PBS solution. In addition, the cytocompatibility of colon cancer (LoVo) cells cultured in hydrogel nanofibers was assessed. It was demonstrated that LoVo cells grown on hydrogel nanofibers showed improved cell adhesion, proliferation, and viability than those on hydrogel. The results suggest that the p (ASF-AGE-NIPAAm) hydrogel nanofibers have potential application in LoVo cells culture in vitro. This study demonstrates the feasibility of fabricating ASF-based nanofibers to culture LoVo cancer cells that can potentially be used as an in vitro cancer cell culture platform.

7.
Talanta ; 75(5): 1270-8, 2008 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-18585212

RESUMEN

Ionic liquid was for the first time employed for selective isolation of heme-protein species. Direct extraction of hemoglobin into ionic liquid without using any concomitant reagent or extractant was carried out. Hemoglobin at the level of 100 ng microL(-1) could readily be quantitatively extracted into ionic liquid (IL) 1-butyl-3-trimethylsilylimidazolium hexafluorophosphate (BtmsimPF(6)) in the absence of any co-existing extractants/additives at pH 7, at the same time; however, the other protein species do not interfere and remain in the aqueous phase. A back extraction efficiency of ca. 80% for 20 ng microL(-1) hemoglobin in ionic liquid phase was achieved with sodium dodecyl sulfate (SDS) solution as stripping reagent. (57)Fe Mossbauer spectra and circular dichroism (CD) spectra indicated that the penta-coordinated ferrous atom in hemoglobin provide a vacant or free coordinating position, which could be occupied by the cationic Btmsim(+) moiety. The interaction/coordination reaction between the iron atom in the heme group of hemoglobin and the cationic ionic liquid moiety furnishes the driving force for facilitating fast transfer of hemoglobin into BtmsimPF(6). The present system was applied for selective isolation of heme-protein, i.e., hemoglobin from human whole blood without any pretreatment, giving rise to satisfactory results.


Asunto(s)
Análisis Químico de la Sangre/métodos , Hemoglobinas/aislamiento & purificación , Imidazoles/química , Líquidos Iónicos/química , Cationes , Hemoglobinas/química , Humanos , Concentración de Iones de Hidrógeno , Hierro/química , Hierro/metabolismo , Sensibilidad y Especificidad , Análisis Espectral
8.
Chemistry ; 13(17): 4833-9, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17366513

RESUMEN

In the aqueous phase, ethidium bromide (EB) intercalates into the double helix structure of dsDNA (ds=double-stranded) with a notable enhancement in fluorescence and resonance light scattering (RLS). However, when dsDNA was extracted into an ionic liquid (IL), 1-butyl-3-methylimidazolium hexafluorophosphate (BmimPF(6)), an abnormal RLS arising from the interactions of IL-DNA-EB was observed, with a substantial decrease of the recorded RLS. The cationic Bmim(+) groups of BmimPF(6) intercalate into the DNA helix structure, in which they interact with the P-O bonds of phosphate groups in DNA strands and result in a reduction of the base-pair interstice along with transformation of DNA conformations that consequently prohibits the intercalation of EB with DNA. Thus, in the IL phase, the interactions between ethidium and DNA were dominated by electrostatic interactions and hydrogen bonding, leading to a congregation of EB entities around the DNA strands that results in an increase of absorption by ethidium, and consequently the inner filter effect leads to a reduction of the RLS. The present observation has been applied to the direct quantification of DNA in an ionic-liquid phase after DNA from human whole blood was extracted into BmimPF(6).


Asunto(s)
ADN/sangre , Etidio/análogos & derivados , Luz , Dispersión de Radiación , ADN/química , Etidio/química , Humanos , Concentración de Iones de Hidrógeno , Imidazoles/química , Líquidos Iónicos/química , Conformación de Ácido Nucleico , Soluciones/química , Agua/química
9.
Anal Chem ; 79(2): 620-5, 2007 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-17222028

RESUMEN

Ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BmimPF6), as a green solvent, was successfully used for the direct extraction of dsDNA. The extraction efficiency and the distribution coefficient values indicated that trace amounts of DNA at the levels of <5 ng microL-1 facilitate quantitative fast extraction, while proteins and metal species do not interfere. A total of 30% of the DNA in ionic liquid at approximately 20 ng microL-1 was back extracted into aqueous phase in phosphate-citrate buffer with a single-stage extraction. The extraction is demonstrated to be endothermic with an enthalpy of 34.3 kJ moL-1. The extraction mechanisms were proposed and verified by 31P NMR and FT-IR spectra. Interactions between cationic 1-butyl-3-methylimidazolium (Bmim+) and P-O bonds of phosphate groups in the DNA strands take place both in the dissolved BmimPF6 in aqueous phase and at the interface of the two phases. This interaction consequently led to the transformation of DNA conformations, along with a reduction of ethidium resonance light scattering at 510 nm, and a procedure for DNA quantification in ionic liquid was developed based on this observation.


Asunto(s)
ADN/aislamiento & purificación , Imidazoles/química , Cationes/química , ADN/análisis , Espectroscopía de Resonancia Magnética , Soluciones/química , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA