Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Am Chem Soc ; 146(17): 11782-11791, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38639158

RESUMEN

Metal halide perovskite materials inherently possess imperfections, particularly under nonequilibrium conditions, such as exposure to light or heat. To tackle this challenge, we introduced stearate ligand-capped nickel oxide (NiOx), a redox-sensitive metal oxide with variable valence, into perovskite intermediate films. The integration of NiOx improved the efficiency and stability of perovskite solar cells (PSCs) by offering multifunctional roles: (1) chemical passivation for ongoing defect repair, (2) energetic passivation to bolster defect tolerance, and (3) field-effect passivation to mitigate charge accumulation. Employing a synergistic approach that tailored these three passivation mechanisms led to a substantial increase in the devices' efficiencies. The target cell (0.12 cm2) and module (18 cm2) exhibited efficiencies of 24.0 and 22.9%, respectively. Notably, the encapsulated modules maintained almost 100 and 87% of the initial efficiencies after operating for 1100 h at the maximum power point (60 °C, 50% RH) and 2000 h of damp-heat testing (85 °C, 85% RH), respectively. Outdoor real-time tests further validated the commercial viability of the NiOx-assisted PSMs. The proposed passivation strategy provides a practical and uncomplicated approach for fabricating high-efficiency and stable photovoltaics.

2.
Liver Int ; 44(8): 2054-2062, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38700381

RESUMEN

BACKGROUND AND AIMS: Hepatitis B virus (HBV) vaccination programs in Taiwan are one of the earliest programs in the world and have largely reduced the prevalence of HBV infection. We aimed to demonstrate the vaccination efficacy after 35 years and identify gaps toward HBV elimination. METHODS: A total of 4717 individuals aged 1-60 years were recruited from four administrative regions based on the proportion of population distribution. Serum levels of hepatitis B surface antigen (HBsAg), hepatitis B surface antibody (anti-HBs), and hepatitis B core antibody (anti-HBc) levels were assessed. HBV viral load, genotypes and HBsAg 'ɑ' determinant variants were evaluated if indicated. RESULTS: After 35 years of vaccination, the overall seropositivity rates for HBsAg and anti-HBc in Taiwan were 4.05% and 21.3%, respectively. The vaccinated birth cohorts exhibited significantly lower seropositivity rates for both markers compared to the unvaccinated birth cohorts (HBsAg: 0.64% vs. 9.78%; anti-HBc: 2.1% vs. 53.55%, respectively; p < 0.0001). Maternal transmission was identified as the main route of HBV infection in breakthrough cases. Additionally, increased prevalences of genotype C and HBsAg escape mutants were observed. CONCLUSION: The 35-year universal HBV vaccination program effectively reduced the burden of HBV infection, but complete eradication of HBV infection has not yet been achieved. In addition to immunization, comprehensive screening and antiviral therapy for infected individuals, especially for pregnant women, are crucial strategies to eliminate HBV.


Asunto(s)
Anticuerpos contra la Hepatitis B , Antígenos de Superficie de la Hepatitis B , Vacunas contra Hepatitis B , Virus de la Hepatitis B , Hepatitis B , Humanos , Taiwán/epidemiología , Femenino , Hepatitis B/epidemiología , Hepatitis B/prevención & control , Masculino , Antígenos de Superficie de la Hepatitis B/sangre , Adulto , Virus de la Hepatitis B/inmunología , Virus de la Hepatitis B/genética , Anticuerpos contra la Hepatitis B/sangre , Persona de Mediana Edad , Niño , Lactante , Adolescente , Adulto Joven , Preescolar , Carga Viral , Genotipo , Prevalencia , Vacunación/estadística & datos numéricos , Transmisión Vertical de Enfermedad Infecciosa/prevención & control , Transmisión Vertical de Enfermedad Infecciosa/estadística & datos numéricos , Programas de Inmunización , Estudios Seroepidemiológicos
3.
J Am Chem Soc ; 145(36): 20081-20087, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37639328

RESUMEN

Developing cost-effective metal electrodes is essential for reducing the overall cost of perovskite solar cells (PSCs). Although copper is highly conductive and economical, it is rarely used as a positive electrode in efficient n-i-p PSCs due to its unmatched Fermi level and low oxidation threshold. We report herein that modification for the inner surface of electrodes using mercaptopyridine-based molecules readily tunes the electronic and chemical properties of copper, which has been achieved by fine-tuning the substituents of mercaptopyridines. The systematic adjustment for the Fermi level and oxidation potential of copper facilitates interfacial hole extraction and enhances the oxidation resistance of copper electrodes, which enables pure copper electrodes to be used in high-performance n-i-p PSCs with different hole transport materials. The resulting PSCs with copper electrodes display excellent power conversion efficiency and long-term stability, even comparable to those of the gold electrodes, showing great potential in the manufacturing and commercialization of PSCs.

4.
J Am Chem Soc ; 143(15): 5855-5866, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33835780

RESUMEN

Perovskite solar cells (PSCs) with organic hole transporting layers (o-HTLs) have been widely studied due to their convenient solution processing, but it remains a big challenge to improve the hole mobilities of commercially available organic hole transporting materials without ion doping while maintaining the stability of PSCs. In this work, we demonstrated that the introduction of perovskite quantum dots (QDs) as interlayers between perovskite layers and dopant-free o-HTLs (P3HT, PTAA, Spiro-OMeTAD) resulted in a significantly enhanced performance of PSCs. The universal role of QDs in improving the efficiency and stability of PSCs was validated, exceeding that of lithium doping. After a deep examination of the mechanism, QD interlayers provided the multifunctional roles as follows: (1) passivating the perovskite surface to reduce the overall amount of trap states; (2) promoting hole extraction from perovskite to dopant-free o-HTLs by forming cascade energy levels; (3) improving hole mobilities of dopant-free o-HTLs by regulating their polymer/molecule orientation. What is more, the thermal/moisture/light stabilities of dopant-free o-HTLs-based PSCs were greatly improved with QD interlayers. Finally, we demonstrated the reliability of the QD interlayers by fabricating large-area solar modules with dopant-free o-HTLs, showing great potential in commercial usage.

5.
J Am Chem Soc ; 142(13): 6149-6157, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32159948

RESUMEN

Perovskite films prepared with CH3NH2 molecules under ambient conditions have led to rapid fabrication of perovskite solar cells (PSCs), but there remains a lack of mechanistic studies and inconsistencies with operability in their production. Here the crystal structure of CH3NH2-CH3NH3PbI3 was analyzed to involve hydrogen bonds (CH3NH2···CH3NH3+) and has guided the facile, reproducible preparation of high-quality perovskite films under ambient conditions. Hydrogen bonds within CH3NH2···CH3NH3+ dimers were found in the CH3NH2-CH3NH3PbI3 intermediates, accompanied by 1D-PbI3- chains (δ-phase). The weakly hydrogen-bonded CH3NH2 molecules were easily released from the CH3NH2-CH3NH3PbI3 intermediates, contributing to rapid, spontaneous phase transition from 1D-PbI3- (δ-phase) to 3D-PbI3- (α-phase). Further introduction of CH3NH3Cl into the CH3NH2-CH3NH3PbI3 intermediates led to interruption of 1D-PbI3- transition into 0D-Pb2I9-xClx5-(0 < x < 6), adjusting the phase transition route toward 3D-PbI3-. On the basis of the above understanding, CH3NH2 solution in ethanol and CH3NH3Cl were used for precursors and a best efficiency of 20.3% in PSCs was achieved. Large-scale modules (12 cm2 aperture area) fabricated by a dip-coating technology exhibited an efficiency up to 16.0% and outstanding stability over 10 000 s under continuous output. The developed preparation method of perovskite precursors and insightful research into the methylamine-dimer-induced phase transition mechanism have enabled the production of high-quality perovskite films with robust operability, showing great potential for large-scale commercialization.

6.
J Am Chem Soc ; 141(1): 541-547, 2019 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-30525560

RESUMEN

Perovskite solar cells (PSCs) have reached certified efficiencies of up to 23.7% but suffered from frailness and instability when exposed to ambient atmosphere. Zinc oxide (ZnO), when used as electron transport layer (ETL) on PSCs, gives rise to excellent electronic, optic, and photonic properties, yet the Lewis basic nature of ZnO surface leads to deprotonation of the perovskite layer, resulting in serious degradation of PSCs using ZnO as ETL. Here, we report a simple but effective strategy to convert ZnO surface into ZnS at the ZnO/perovskite interface by sulfidation. The sulfide on ZnO-ZnS surface binds strongly with Pb2+ and creates a novel pathway of electron transport to accelerate electron transfer and reduce interfacial charge recombination, yielding a champion efficiency of 20.7% with improved stability and no appreciable hysteresis. The model devices modified with sulfide maintained 88% of their initial performance for 1000 h under storage condition and 87% for 500 h under UV radiation. ZnS is demonstrated to act as both a cascade ETL and a passivating layer for enhancing the performance of PSCs.

7.
Nat Commun ; 15(1): 3202, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38615087

RESUMEN

Dye-sensitized photoelectrodes consisting of photosensitizers and molecular catalysts with tunable structures and adjustable energy levels are attractive for low-cost and eco-friendly solar-assisted synthesis of energy rich products. Despite these advantages, dye-sensitized NiO photocathodes suffer from severe electron-hole recombination and facile molecule detachment, limiting photocurrent and stability in photoelectrochemical water-splitting devices. In this work, we develop an efficient and robust biohybrid dye-sensitized NiO photocathode, in which the intermolecular charge transfer is enhanced by a redox polymer. Owing to efficient assisted electron transfer from the dye to the catalyst, the biohybrid NiO photocathode showed a satisfactory photocurrent of 141±17 µA·cm-2 at neutral pH at 0 V versus reversible hydrogen electrode and a stable continuous output within 5 h. This photocathode is capable of driving overall water splitting in combination with a bismuth vanadate photoanode, showing distinguished solar-to-hydrogen efficiency among all reported water-splitting devices based on dye-sensitized photocathodes. These findings demonstrate the opportunity of building green biohybrid systems for artificial synthesis of solar fuels.

8.
Biomed J ; : 100661, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37774792

RESUMEN

BACKGROUND: Intestinal parasitic infections are the most common infectious diseases among Southeast Asian migrant workers in Taiwan, especially for infections with Blastocystis hominis. However, little is known about the impact of Blastocystis subtypes (STs) on the gut microbiota. MATERIAL AND METHODS: We retrospectively evaluated the prevalence of intestinal parasites in a teaching hospital in Northern Taiwan in the period of 2015 to 2019. Blastocystis-positive stool specimens were collected for ST analysis by polymerase chain reaction in 2020. Intestinal microbiota analyses of different Blastocystis STs and Blastocystis-free individuals were conducted by 16S rRNA sequencing. RESULTS: A total of 13,859 subjects were analyzed, of which 1,802 cases (13%) were diagnosed with intestinal parasitic infections. B. hominis infections were the most prevalent (n = 1546, 85.7%). ST analysis of Blastocystis-positive samples (n=150) indicated that ST1 was the most common type, followed by ST3, ST4, ST2, ST7, and ST5. Different Blastocystis STs (ST1, ST3, and ST4) were associated with distinct richness and diversity of the microbiota. Taxonomic profiles revealed that Akkermansia muciniphila was significantly enriched for all analyzed Blastocystis STs, whereas Holdemanella biformis was more abundant in the Blastocystis-free group. Additionally, Succinivibrio dextrinosolvens and Coprococcus eutactus were specifically more abundant in ST3 carriers than in non-infected individuals. CONCLUSIONS: This study demonstrates that A. muciniphila is positively associated with all Blastocystis STs, while H. biformis was negatively associated with them. Several bacteria were enriched in specific STs, highlighting the need for further microbiota analysis at the ST level to elucidate the pathogenicity of Blastocystis.

9.
J Phys Chem Lett ; 13(7): 1765-1776, 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35167286

RESUMEN

The preparation of solution-processed metal halide perovskites is interwoven with research on their intermediate chemistry. In this Perspective, molecule-level insights are provided into how Lewis base additives (LBAs), e.g., DMSO and NMP, facilitate powder-to-film formation processes (i.e., the chemical origin of intermediate structures, structural evolution of intermediate-to-perovskite phase transition, and device-based application of intermediate-evolved perovskites). LBAs interact with Lewis acid species (cationic A+ or B2+ sites) of ABX3 structures with separate probability in terms of coordination bonds or hydrogen bonds to form two types of intermediate structures, inducing significant differences within intermediate-to-perovskite processes. In addition, in-depth understanding of intermediate chemistry favors the multifaceted applications of solution-processed perovskites. A brief summary is finally provided together with a perspective on how intermediate chemistry determines perovskite properties and applications.

10.
ChemSusChem ; 15(14): e202200340, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35377527

RESUMEN

Hole transport materials (HTMs) play a requisite role in n-i-p perovskite solar cells (PSCs). The properties of HTMs, such as hole extraction efficiency, chemical compatibility, film morphology, ion migration barrier, and so on, significantly affect PSCs' power conversion efficiencies (PCEs) and stabilities. Up till now, researchers have devoted much attention to developing new types of HTMs as well as promoting pristine HTMs using numerous strategies. In this Review, we summarize the design strategies of various common HTMs for n-i-p PSCs are comprehensively discussed from two separate aspects (additive and non-additive engineering). Additive engineering generally tunes electronic properties of HTMs while non-additive engineering basically modifies their steric structures. Critical analysis and comparison between these design strategies are provided, considering the overall PCEs and stabilities of PSCs. Finally, a brief perspective on future promising design strategies for HTMs is given, in order to fabricate efficient and stable n-i-p devices for the commercialization of PSCs.

11.
Adv Sci (Weinh) ; 9(26): e2201573, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35859254

RESUMEN

Power conversion efficiency (PCE) and long-term stability are two vital issues for perovskite solar cells (PSCs). However, there is still a lack of suitable hole transport layers (HTLs) to endow PSCs with both high efficiency and stability. Here, NiOx nanoparticles are promoted as an efficient and 85 °C/85%-stable inorganic HTL for high-performance n-i-p PSCs, with the introduction of perovskite quantum dots (QDs) between perovskite and NiOx as systematic interfacial engineering. The QD intercalation enhances film morphology and assembly regulation of NiOx HTLs . Due to structure-function correlations, hole mobility within NiOx HTL is improved. And the hole extraction from perovskite to NiOx is also facilitated, resulting from reduced trap states and optimized energy level alignments. Hence, the promoted NiOx -based n-i-p PSCs exhibit high PCE (21.59%) and excellent stability (sustaining 85 °C aging in air without encapsulation). Furthermore, encapsulated solar modules with QDs-promoted NiOx HTLs show impressive stability during 85 °C/85% aging test for 1000 hours. With high transparency, QDs-promoted NiOx is also demonstrated to be an advanced HTL for semitransparent PSCs. This work develops promising NiOx inorganic HTL in n-i-p PSCs for manufacturing next-generation photovoltaic devices.

12.
ACS Cent Sci ; 8(7): 1008-1016, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35912345

RESUMEN

Research on solvent chemistry, particularly for halide perovskite intermediates, has been advancing the development of perovskite solar cells (PSCs) toward commercial applications. A predictive understanding of solvent effects on the perovskite formation is thus essential. This work systematically discloses the relationship among the basicity of solvents, solvent-contained intermediate structures, and intermediate-to-perovskite α-FAPbI3 evolutions. Depending on their basicity, solvents exhibit their own favorite bonding selection with FA+ or Pb2+ cations by forming either hydrogen bonds or coordination bonds, resulting in two different kinds of intermediate structures. While both intermediates can be evolved into α-FAPbI3 below the δ-to-α thermodynamic temperature, the hydrogen-bond-favorable kind could form defect-less α-FAPbI3 via sidestepping the break of strong coordination bonds. The disclosed solvent gaming mechanism guides the solvent selection for fabricating high-quality perovskite films and thus high-performance PSCs and modules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA