Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cancer Cell Int ; 22(1): 203, 2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35642058

RESUMEN

BACKGROUND: Ubiquitination is a basic post-translational modification of intracellular proteins and can be reversed enzymatically by DUBs (deubiquitinating enzymes). More than 90 DUBs have been identified. Among them, the deubiquitinating enzyme YOD1, a member of the ovarian tumor domain protease (OTUs) subfamily, is involved in the regulation of endoplasmic reticulum (ER)-related degradation pathways. In fact, it is reported that YOD1 is an important proliferation and metastasis-inducing gene, which can stimulate the characteristics of cancer stem cells and maintain circulating tumor cells (CTC). However, the expression level, prognostic effect and biological functional mechanism of YOD1 in pancreatic cancer are still unclear. RESULTS: In the GEO and TCGA databases, YOD1 mRNA expression is significantly up regulated in a variety of human pancreatic cancer tissues. Survival analysis showed that the up regulation of YOD1 can predict poor prognosis of pancreatic cancer. Cox analysis showed that high YOD1 expression is an independent prognostic factor of pancreatic cancer. ROC analysis shows that YOD1 has significant diagnostic value. The immunohistochemistry (IHC) results showed that the protein expression level of YOD1 in pancreatic cancer tissue was higher than that in neighboring non-pancreatic cancer tissues (P < 0.001). In addition, we found that YOD1 expression is negatively correlated with the infiltration level of CD8 + T cells, macrophages, neutrophils and dendritic cells (DC) in pancreatic cancer. The expression of YOD1 has a strong correlation with the different immune marker sets in PAAD. Co-expression network and functional enrichment analysis indicate that YOD1 may participate in the development of pancreatic cancer through cell adhesion molecules, p53, Hippo, TGF-ß and other pathways. The experimental results of EDU, Transwell, Immunohistochemistry (IHC), Western blot and Flow Cytometry indicate that YOD1 is highly expressed in pancreatic cancer cells and pancreatic cancer tissues, and its overexpression can promote the proliferation and metastasis of pancreatic cancer cells and affect the immune microenvironment. CONCLUSION: Our results indicate that YOD1 may be a useful biomarker for the prognosis of human pancreatic cancer, and it may also be a potential molecular target for the diagnosis and treatment of pancreatic cancer.

2.
Bioorg Chem ; 129: 106162, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36183564

RESUMEN

Xanthine oxidoreductase (XOR) is a clinically validated target for the treatment of hyperuricemia and gout. A series of novel 1,2,4-triazoles were identified as potent XO inhibitors via a fused-pharmacophore strategy based on the interaction modes of febuxostat and topiroxostat. Among them, compound 7i showed an IC50 value of 0.20 nM against XOR, which was superior to febuxostat and topiroxostat. Furthermore, 7i exhibited significant hypouricemic and serum XOR inhibitory effects in potassium oxonate induced hyperuricemia mouse models. A single-dose toxicity assessment of 7i showed no noticeable toxicity at the dose of 50 mg/kg. These results demonstrated that 7i could be a promising lead compound for the treatment of hyperuricemia and gout.


Asunto(s)
Gota , Hiperuricemia , Ratones , Animales , Febuxostat/farmacología , Xantina Deshidrogenasa/uso terapéutico , Hiperuricemia/inducido químicamente , Hiperuricemia/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Triazoles/farmacología , Triazoles/uso terapéutico , Gota/tratamiento farmacológico , Xantina Oxidasa
3.
Adv Sci (Weinh) ; 11(15): e2306472, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38342606

RESUMEN

Myofibrillogenesis regulator-1 (MR-1) is a multifunctional protein involved in the development of various human tumors. The study is the first to report the promoting effect of MR-1 on the development and metastasis of non-small cell lung cancer (NSCLC). MR-1 is upregulated in NSCLC and positively associated with poor prognosis. The overexpression of MR-1 promotes the metastasis of NSCLC cells by stabilizing the expression of Notch3-ICD (NICD3) in the cytoplasm through enrichment analysis, in vitro and in vivo experimental researches. And Notch3 signaling can upregulate many genes related to metastasis. The stabilizing effect of MR-1 on NICD3 is achieved through the mono-ubiquitin lysosomal pathway and the specific E3 ubiquitin ligase is Itchy homolog (ITCH). There is a certain interaction between MR-1 and NICD3. Elevated MR-1 can affect the level of ITCH phosphorylation, reduce its E3 enzyme activity, and thus lead to reduce the ubiquitination and degradation of NICD3. Interference with the interaction between MR-1 and NICD3 can increase the degradation of NICD3 and impair the metastatic ability of NSCLC cells, which is a previously overlooked treatment option in NSCLC. In summary, interference with the interaction between MR-1 and NICD3 in the progression of lung cancer may be a promising therapeutic target.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Neoplasias Pulmonares/genética , Lisosomas/metabolismo , Desarrollo de Músculos , Ubiquitina , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
4.
Eur J Med Chem ; 230: 114101, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35063733

RESUMEN

Xanthine oxidase (XO) is an important therapeutic target for the treatment of hyperuricemia and gout. A virtual screening strategy with enhanced characterization of the molybdopterin binding group (MBG) was applied for the identification of novel XO inhibitors. Briefly, a 3D QSAR pharmacophore with fragment recognition capability was constructed by setting the MBG as a customized-pharmacophore feature. In addition, 2D QSAR was established with descriptors based on density functional theory (DFT), physical and chemical properties as well as topological properties. Descriptors related to metal ion recognition were emphasized to enhance the characterization of the MBG and to improve the screening efficiency. The 3D and 2D QSAR models were combined with the pharmacophore derived from XO-inhibitor complexes and docking with hydrogen bond constraints to screen the compound library of Specs. After two rounds of screening, six compounds with significant inhibition against XO were identified and the most active one XO-33 showed an IC50 of 23.3 nM. These compounds are structurally distinct from the known XO inhibitors, and provide new chemical prototypes for further discovery of potent and novel XO inhibitors.


Asunto(s)
Inhibidores Enzimáticos , Xantina Oxidasa , Inhibidores Enzimáticos/farmacología , Humanos , Hiperuricemia , Simulación del Acoplamiento Molecular , Cofactores de Molibdeno , Relación Estructura-Actividad Cuantitativa , Xantina Oxidasa/antagonistas & inhibidores
5.
Front Mol Neurosci ; 15: 1025066, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36698780

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive neurodegeneration and cognitive decline. Evodiamine, a main component in Chinese medicine, was found to improve cognitive impairment in AD model mice based on several intensive studies. However, evodiamine has high cytotoxicity and poor bioactivity. In this study, several evodiamine derivatives were synthesized via heterocyclic substitution and amide introduction and screened for cytotoxicity and antioxidant capacity. Under the same concentrations, compound 4c was found to exhibit lower cytotoxicity and higher activity against H2O2 and amyloid ß oligomers (AßOs) than evodiamine in vitro and significantly improve the working memory and spatial memory of 3 x Tg and APP/PS1 AD mice. Subsequent RNA sequencing and pathway enrichment analysis showed that 4c affected AD-related genes and the AMPK and insulin signaling pathways. Furthermore, we confirmed that 4c recovered PI3K/AKT/GSK3ß/Tau dysfunction in vivo and in vitro. In conclusion, 4c represents a potential lead compound for AD therapy based on the recovery of PI3K/AKT/GSK3ß pathway dysfunction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA