Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Biochem Biophys Res Commun ; 497(3): 869-875, 2018 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-29470990

RESUMEN

Cell migration is a critical process during development, tissue repair, and cancer metastasis. It requires complex processes of cell adhesion, cytoskeletal dynamics, and force generation. Lis1 plays an important role in the migration of neurons, fibroblasts and other cell types, and is essential for normal development of the cerebral cortex. Mutations in human LIS1 gene cause classical lissencephaly (smooth brain), resulting from defects in neuronal migration. However, how Lis1 may affect force generation in migrating cells is still not fully understood. Using traction force microscopy (TFM) with live cell imaging to measure cellular traction force in migrating NIH3T3 cells, we showed that Lis1 knockdown (KD) by RNA interference (RNAi) caused reductions in cell migration and traction force against the extracellular matrix (ECM). Immunostaining of cytoskeletal components in Lis1 KD cells showed disorganization of microtubules and actin filaments. Interestingly, focal adhesions at the cell periphery were significantly reduced. These results suggest that Lis1 is important for cellular traction force generation through the regulation of cytoskeleton organization and focal adhesion formation in migrating cells.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Movimiento Celular , Citoesqueleto/metabolismo , Fibroblastos/citología , Proteínas Asociadas a Microtúbulos/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , Animales , Fenómenos Biomecánicos , Fibroblastos/metabolismo , Adhesiones Focales/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/genética , Células 3T3 NIH , Interferencia de ARN
2.
Dev Cell ; 48(2): 184-199.e5, 2019 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-30695697

RESUMEN

During cerebellar development, granule neuron progenitors (GNPs) proliferate by transducing Sonic Hedgehog (SHH) signaling via the primary cilium. Precise regulation of ciliogenesis, thus, ensures proper GNP pool expansion. Here, we report that Atoh1, a transcription factor required for GNPs formation, controls the presence of primary cilia, maintaining GNPs responsiveness to SHH. Loss of primary cilia abolishes the ability of Atoh1 to keep GNPs in a proliferative state. Mechanistically, Atoh1 promotes ciliogenesis by transcriptionally regulating Cep131, which facilitates centriolar satellite (CS) clustering to the basal body. Importantly, ectopic expression of Cep131 counteracts the effects of Atoh1 loss in GNPs by restoring proper localization of CS and ciliogenesis. This Atoh1-CS-primary cilium-SHH pro-proliferative pathway is also conserved in SHH-type medulloblastoma, a pediatric brain tumor arising from the GNPs. Together, our data reveal how Atoh1 modulates the primary cilium to regulate GNPs development.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/fisiología , Cilios/metabolismo , Proteínas Hedgehog/metabolismo , Neuronas/metabolismo , Animales , Neoplasias Encefálicas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Neoplasias Cerebelosas/metabolismo , Meduloblastoma/metabolismo , Ratones Transgénicos , Neurogénesis
3.
Nat Commun ; 9(1): 2498, 2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29950674

RESUMEN

Mutations in genes involved in the production, migration, or differentiation of cortical neurons often lead to malformations of cortical development (MCDs). However, many genetic mutations involved in MCD pathogenesis remain unidentified. Here we developed a genetic screening paradigm based on transposon-mediated somatic mutagenesis by in utero electroporation and the inability of mutant neuronal precursors to migrate to the cortex and identified 33 candidate MCD genes. Consistent with the screen, several genes have already been implicated in neural development and disorders. Functional disruption of the candidate genes by RNAi or CRISPR/Cas9 causes altered neuronal distributions that resemble human cortical dysplasia. To verify potential clinical relevance of these candidate genes, we analyzed somatic mutations in brain tissue from patients with focal cortical dysplasia and found that mutations are enriched in these candidate genes. These results demonstrate that this approach is able to identify potential mouse genes involved in cortical development and MCD pathogenesis.


Asunto(s)
Corteza Cerebral/anomalías , Epilepsia/genética , Pruebas Genéticas/métodos , Malformaciones del Desarrollo Cortical de Grupo I/genética , Neuronas/patología , Adolescente , Adulto , Animales , Biomarcadores/análisis , Sistemas CRISPR-Cas , Corteza Cerebral/citología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Niño , Preescolar , Elementos Transponibles de ADN/genética , Modelos Animales de Enfermedad , Epilepsia/diagnóstico , Epilepsia/patología , Femenino , Neuroimagen Funcional , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Malformaciones del Desarrollo Cortical de Grupo I/diagnóstico , Malformaciones del Desarrollo Cortical de Grupo I/patología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Mutagénesis/genética , Mutación , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA