Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hepatology ; 77(1): 213-229, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35363898

RESUMEN

BACKGROUND AND AIMS: Metabolism in the liver is dysregulated in obesity, contributing to various health problems including steatosis and insulin resistance. While the pathogenesis of lipid accumulation has been extensively studied, the protective mechanism against lipid challenge in the liver remains unclear. Here, we report that Src homology 3 domain binding kinase 1 (SBK1) is a regulator of hepatic lipid metabolism and systemic insulin sensitivity in response to obesity. APPROACH AND RESULTS: Enhanced Sbk1 expression was found in the liver of high-fat diet (HFD)-induced obese mice and fatty acid (FA)-challenged hepatocytes. SBK1 knockdown in mouse liver cells augmented FA uptake and lipid accumulation. Similarly, liver-specific SBK1 knockout ( Lsko ) mice displayed more severe hepatosteatosis and higher expression of genes in FA uptake and lipogenesis than the Flox/Flox ( Fl/Fl ) control mice when fed the HFD. The HFD-fed Lsko mice also showed symptoms of hyperglycemia, poor systemic glucose tolerance, and lower insulin sensitivity than the Fl/Fl mice. On the other hand, hepatic Sbk1 overexpression alleviated the high-fructose diet-induced hepatosteatosis, hyperlipidemia, and hyperglycemia in mice. White adipose tissue browning was also observed in hepatic SBK1 -overexpressed mice. Moreover, we found that SBK1 was a positive regulator of FGF21 in the liver during energy surplus conditions. Mechanistically, SBK1 phosphorylates the orphan nuclear receptor 4A1 (Nur77) on serine 344 to promote hepatic FGF21 expression and inhibit the transcription of genes involved in lipid anabolism. CONCLUSIONS: Collectively, our data suggest that SBK1 is a regulator of the metabolic adaption against obesity through the Nur77-FGF21 pathway.


Asunto(s)
Hígado Graso , Resistencia a la Insulina , Proteínas Quinasas , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Hígado Graso/metabolismo , Hígado Graso/patología , Hiperglucemia/complicaciones , Hiperglucemia/metabolismo , Hiperglucemia/patología , Lípidos , Hígado/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/complicaciones , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares
2.
Mol Cancer ; 22(1): 3, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36617554

RESUMEN

BACKGROUND: This study aimed to validate whether infusion of GD2-specific fourth-generation safety-designed chimeric antigen receptor (4SCAR)-T cells is safe and whether CAR-T cells exert anti-glioblastoma (GBM) activity. METHODS: A total of eight patients with GD2-positive GBM were enrolled and infused with autologous GD2-specific 4SCAR-T cells, either through intravenous administration alone or intravenous combined with intracavitary administration. RESULTS: 4SCAR-T cells expanded for 1-3 weeks and persisted at a low frequency in peripheral blood. Of the eight evaluable patients, four showed a partial response for 3 to 24 months, three had progressive disease for 6 to 23 months, and one had stable disease for 4 months after infusion. For the entire cohort, the median overall survival was 10 months from the infusion. GD2 antigen loss and infiltrated T cells were observed in the tumor resected after infusion. CONCLUSION: Both single and combined infusions of GD2-specific 4SCAR-T cells in targeting GBM were safe and well tolerated, with no severe adverse events. In addition, GD2-specific 4SCAR-T cells partially mediate antigen loss and activate immune responses in the tumor microenvironment. Validation of our findings in a larger prospective trial is warranted. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03170141 . Registered 30 May 2017.


Asunto(s)
Glioblastoma , Receptores Quiméricos de Antígenos , Humanos , Glioblastoma/tratamiento farmacológico , Inmunoterapia Adoptiva/efectos adversos , Estudios Prospectivos , Receptores de Antígenos de Linfocitos T , Receptores Quiméricos de Antígenos/genética , Linfocitos T , Microambiente Tumoral
3.
Proc Natl Acad Sci U S A ; 117(45): 28307-28315, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33122440

RESUMEN

Filamentous actin (F-actin) cytoskeletal remodeling is critical for glucose-stimulated insulin secretion (GSIS) in pancreatic ß-cells, and its dysregulation causes type 2 diabetes. The adaptor protein APPL1 promotes first-phase GSIS by up-regulating soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein expression. However, whether APPL2 (a close homology of APPL1 with the same domain organization) plays a role in ß-cell functions is unknown. Here, we show that APPL2 enhances GSIS by promoting F-actin remodeling via the small GTPase Rac1 in pancreatic ß-cells. ß-cell specific abrogation of APPL2 impaired GSIS, leading to glucose intolerance in mice. APPL2 deficiency largely abolished glucose-induced first- and second-phase insulin secretion in pancreatic islets. Real-time live-cell imaging and phalloidin staining revealed that APPL2 deficiency abolished glucose-induced F-actin depolymerization in pancreatic islets. Likewise, knockdown of APPL2 expression impaired glucose-stimulated F-actin depolymerization and subsequent insulin secretion in INS-1E cells, which were attributable to the impairment of Ras-related C3 botulinum toxin substrate 1 (Rac1) activation. Treatment with the F-actin depolymerization chemical compounds or overexpression of gelsolin (a F-actin remodeling protein) rescued APPL2 deficiency-induced defective GSIS. In addition, APPL2 interacted with Rac GTPase activating protein 1 (RacGAP1) in a glucose-dependent manner via the bin/amphiphysin/rvs-pleckstrin homology (BAR-PH) domain of APPL2 in INS-1E cells and HEK293 cells. Concomitant knockdown of RacGAP1 expression reverted APPL2 deficiency-induced defective GSIS, F-actin remodeling, and Rac1 activation in INS-1E cells. Our data indicate that APPL2 interacts with RacGAP1 and suppresses its negative action on Rac1 activity and F-actin depolymerization thereby enhancing GSIS in pancreatic ß-cells.


Asunto(s)
Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/farmacología , Glucosa/metabolismo , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Proteínas Activadoras de GTPasa/metabolismo , Técnicas de Silenciamiento del Gen , Intolerancia a la Glucosa , Células HEK293 , Humanos , Masculino , Ratones , Ratones Noqueados , Neuropéptidos/genética , Neuropéptidos/metabolismo , Proteínas SNARE/metabolismo , Transcriptoma , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo
4.
Sensors (Basel) ; 23(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37448037

RESUMEN

This paper proposes a method for accurate 3D posture sensing of the soft actuators, which could be applied to the closed-loop control of soft robots. To achieve this, the method employs an array of miniaturized sponge resistive materials along the soft actuator, which uses long short-term memory (LSTM) neural networks to solve the end-to-end 3D posture for the soft actuators. The method takes into account the hysteresis of the soft robot and non-linear sensing signals from the flexible bending sensors. The proposed approach uses a flexible bending sensor made from a thin layer of conductive sponge material designed for posture sensing. The LSTM network is used to model the posture of the soft actuator. The effectiveness of the method has been demonstrated on a finger-size 3 degree of freedom (DOF) pneumatic bellow-shaped actuator, with nine flexible sponge resistive sensors placed on the soft actuator's outer surface. The sensor-characterizing results show that the maximum bending torque of the sensor installed on the actuator is 4.7 Nm, which has an insignificant impact on the actuator motion based on the working space test of the actuator. Moreover, the sensors exhibit a relatively low error rate in predicting the actuator tip position, with error percentages of 0.37%, 2.38%, and 1.58% along the x-, y-, and z-axes, respectively. This work is expected to contribute to the advancement of soft robot dynamic posture perception by using thin sponge sensors and LSTM or other machine learning methods for control.


Asunto(s)
Robótica , Porosidad , Diseño de Equipo , Movimiento (Física) , Robótica/métodos , Percepción
5.
J Neuroeng Rehabil ; 18(1): 150, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34635141

RESUMEN

BACKGROUND: Falls are more prevalent in stroke survivors than age-matched healthy older adults because of their functional impairment. Rapid balance recovery reaction with adequate range-of-motion and fast response and movement time are crucial to minimize fall risk and prevent serious injurious falls when postural disturbances occur. A Kinect-based Rapid Movement Training (RMT) program was developed to provide real-time feedback to promote faster and larger arm reaching and leg stepping distances toward targets in 22 different directions. OBJECTIVE: To evaluate the effectiveness of the interactive RMT and Conventional Balance Training (CBT) on chronic stroke survivors' overall balance and balance recovery reaction. METHODS: In this assessor-blinded randomized controlled trial, chronic stroke survivors were randomized to receive twenty training sessions (60-min each) of either RMT or CBT. Pre- and post-training assessments included clinical tests, as well as kinematic measurements and electromyography during simulated forward fall through a "lean-and-release" perturbation system. RESULTS: Thirty participants were recruited (RMT = 16, CBT = 14). RMT led to significant improvement in balance control (Berg Balance Scale: pre = 49.13, post = 52.75; P = .001), gait control (Timed-Up-and-Go Test: pre = 14.66 s, post = 12.62 s; P = .011), and motor functions (Fugl-Meyer Assessment of Motor Recovery: pre = 60.63, post = 65.19; P = .015), which matched the effectiveness of CBT. Both groups preferred to use their non-paretic leg to take the initial step to restore stability, and their stepping leg's rectus femoris reacted significantly faster post-training (P = .036). CONCLUSION: The RMT was as effective as conventional balance training to provide beneficial effects on chronic stroke survivors' overall balance, motor function and improving balance recovery with faster muscle response. TRIAL REGISTRATION: The study was registered at Clinicaltrials.gov ( https://clinicaltrials.gov/ct2/show/NCT03183635 , NCT03183635) on 12 June 2017.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Accidentes por Caídas/prevención & control , Anciano , Humanos , Equilibrio Postural , Accidente Cerebrovascular/complicaciones , Estudios de Tiempo y Movimiento
6.
Clin Sci (Lond) ; 134(2): 315-330, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31998947

RESUMEN

Adipose tissue as the largest energy reservoir and endocrine organ is essential for maintenance of systemic glucose, lipid and energy homeostasis, but these metabolic functions decline with ageing and obesity. Adipose tissue senescence is one of the common features in obesity and ageing. Although cellular senescence is a defensive mechanism preventing tumorigenesis, its occurrence in adipose tissue causatively induces defective adipogenesis, inflammation, aberrant adipocytokines production and insulin resistance, leading to adipose tissue dysfunction. In addition to these paracrine effects, adipose tissue senescence also triggers systemic inflammation and senescence as well as insulin resistance in the distal metabolic organs, resulting in Type 2 diabetes and other premature physiological declines. Multiple cell types including mature adipocytes, immune cells, endothelial cells and progenitor cells gradually senesce at different levels in different fat depots with ageing and obesity, highlighting the heterogeneity and complexity of adipose tissue senescence. In this review, we discuss the causes and consequences of adipose tissue senescence, and the major cell types responsible for adipose tissue senescence in ageing and obesity. In addition, we summarize the pharmacological approaches and lifestyle intervention targeting adipose tissue senescence for the treatment of obesity- and ageing-related metabolic diseases.


Asunto(s)
Tejido Adiposo/patología , Envejecimiento/patología , Enfermedades Metabólicas/patología , Obesidad/patología , Animales , Humanos , Terapia Molecular Dirigida , Transducción de Señal
7.
EMBO Rep ; 19(4)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29467283

RESUMEN

Activation of brown adipose tissue (BAT) and beige fat by cold increases energy expenditure. Although their activation is known to be differentially regulated in part by hypothalamus, the underlying neural pathways and populations remain poorly characterized. Here, we show that activation of rat-insulin-promoter-Cre (RIP-Cre) neurons in ventromedial hypothalamus (VMH) preferentially promotes recruitment of beige fat via a selective control of sympathetic nervous system (SNS) outflow to subcutaneous white adipose tissue (sWAT), but has no effect on BAT Genetic ablation of APPL2 in RIP-Cre neurons diminishes beiging in sWAT without affecting BAT, leading to cold intolerance and obesity in mice. Such defects are reversed by activation of RIP-Cre neurons, inactivation of VMH AMPK, or treatment with a ß3-adrenergic receptor agonist. Hypothalamic APPL2 enhances neuronal activation in VMH RIP-Cre neurons and raphe pallidus, thereby eliciting SNS outflow to sWAT and subsequent beiging. These data suggest that beige fat can be selectively activated by VMH RIP-Cre neurons, in which the APPL2-AMPK signaling axis is crucial for this defending mechanism to cold and obesity.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Neuronas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Sistema Nervioso Simpático/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Tejido Adiposo Beige/metabolismo , Tejido Adiposo Pardo/metabolismo , Animales , Metabolismo Energético , Eliminación de Gen , Técnicas de Sustitución del Gen , Genotipo , Hipotálamo/metabolismo , Ratones , Ratones Noqueados , Fenotipo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Transducción de Señal , Termogénesis
8.
Int J Mol Sci ; 21(11)2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32545355

RESUMEN

Adipose tissue is an active endocrine and immune organ that controls systemic immunometabolism via multiple pathways. Diverse immune cell populations reside in adipose tissue, and their composition and immune responses vary with nutritional and environmental conditions. Adipose tissue dysfunction, characterized by sterile low-grade chronic inflammation and excessive immune cell infiltration, is a hallmark of obesity, as well as an important link to cardiometabolic diseases. Amongst the pro-inflammatory factors secreted by the dysfunctional adipose tissue, interleukin (IL)-1ß, induced by the NLR family pyrin domain-containing 3 (NLRP3) inflammasome, not only impairs peripheral insulin sensitivity, but it also interferes with the endocrine and immune functions of adipose tissue in a paracrine manner. Human studies indicated that NLRP3 activity in adipose tissues positively correlates with obesity and its metabolic complications, and treatment with the IL-1ß antibody improves glycaemia control in type 2 diabetic patients. In mouse models, genetic or pharmacological inhibition of NLRP3 activation pathways or IL-1ß prevents adipose tissue dysfunction, including inflammation, fibrosis, defective lipid handling and adipogenesis, which in turn alleviates obesity and its related metabolic disorders. In this review, we summarize both the negative and positive regulators of NLRP3 inflammasome activation, and its pathophysiological consequences on immunometabolism. We also discuss the potential therapeutic approaches to targeting adipose tissue inflammasome for the treatment of obesity and its related metabolic disorders.


Asunto(s)
Tejido Adiposo/metabolismo , Inflamasomas/metabolismo , Enfermedades Metabólicas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Adipoquinas/metabolismo , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/patología , Animales , Autofagia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Humanos , Resistencia a la Insulina , Metabolismo de los Lípidos , Lipopolisacáridos/farmacología , Enfermedades Metabólicas/tratamiento farmacológico , Enfermedades Metabólicas/patología , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Obesidad/metabolismo , Obesidad/patología , Paniculitis/metabolismo , Paniculitis/patología
9.
Macromol Rapid Commun ; 40(1): e1800530, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30368953

RESUMEN

Chemical heterogeneity on biomaterial surfaces can transform its interfacial properties, rendering nanoscale heterogeneity profoundly consequential during bioadhesion. To examine the role played by chemical heterogeneity in the adsorption of viruses on synthetic surfaces, a range of novel coatings is developed wherein a tunable mixture of electrostatic tethers for viral binding, and carbohydrate brushes, bearing pendant α-mannose, ß-galactose, or ß-glucose groups, is incorporated. The effects of binding site density, brush composition, and brush architecture on viral adsorption, with the goal of formulating design specifications for virus-resistant coatings are experimentally evaluated. It is concluded that virus-coating interactions are shaped by the interplay between brush architecture and binding site density, after quantifying the adsorption of adenoviruses, influenza, and fibrinogen on a library of carbohydrate brushes co-immobilized with different ratios of binding sites. These insights will be of utility in guiding the design of polymer coatings in realistic settings where they will be populated with defects.


Asunto(s)
Adenoviridae/química , Carbohidratos/química , Fibrinógeno/química , Subtipo H1N1 del Virus de la Influenza A/química , Polímeros/química , Adsorción , Sitios de Unión , Estructura Molecular , Tamaño de la Partícula , Polímeros/síntesis química , Electricidad Estática , Propiedades de Superficie
10.
Age Ageing ; 48(2): 220-228, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30462162

RESUMEN

BACKGROUND: Limited trials examining the effect of exercise and nutrition supplementation in older people with sarcopenia are available. OBJECTIVES: to assess the impact of resistance exercise program targeting muscle strength and power with and without nutrition supplementation on gait speed, body composition, physical function and quality of life. METHODS: this trial randomized 113 community-dwelling older Chinese adults aged ≥65 and with sarcopenia defined using the Asian Criteria into one of the three groups: exercise program alone, combined-exercise program and nutrition supplement or waitlist control. The exercise program consisted of 90-min group training twice weekly and one-home session weekly for 12 weeks. Participants in the combined group were additionally asked to consume nutrition supplement twice daily for 12 weeks. Both groups were encouraged to keep home exercise after intervention period for another 12 weeks to detect sustained effect. The primary outcome was gait speed. RESULTS: at 12 and 24 weeks, gait speed did not differ significantly between groups. Significant improvement in leg extension, and five-chair stand test occurred in both intervention groups that persisted to 24 weeks. Physical Activity Scale for the Elderly improved in both intervention groups that persisted until 24 weeks only in the combined group. Lower limb muscle and appendicular skeletal muscle mass increased significantly in the combined group but the increase was not sustained to 24 weeks. CONCLUSION: the exercise program with and without nutrition supplementation had no significant effect on the primary outcome of gait speed but improved the secondary outcomes of strength and the five-chair stand test in community-dwelling Chinese sarcopenic older adults. CLINICALTRIALS.GOV IDENTIFIER: NCT02374268.


Asunto(s)
Terapia Nutricional , Entrenamiento de Fuerza , Sarcopenia/terapia , Anciano , Composición Corporal , China , Femenino , Marcha , Humanos , Vida Independiente , Masculino , Fuerza Muscular , Terapia Nutricional/métodos , Aptitud Física , Calidad de Vida , Entrenamiento de Fuerza/métodos
11.
Int J Mol Sci ; 20(22)2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-31718027

RESUMEN

First seen as a fat-storage tissue, the adipose tissue is considered as a critical player in the endocrine system. Precisely, adipose tissue can produce an array of bioactive factors, including cytokines, lipids, and extracellular vesicles, which target various systemic organ systems to regulate metabolism, homeostasis, and immune response. The global effects of adipokines on metabolic events are well defined, but their impacts on brain function and pathology remain poorly defined. Receptors of adipokines are widely expressed in the brain. Mounting evidence has shown that leptin and adiponectin can cross the blood-brain barrier, while evidence for newly identified adipokines is limited. Significantly, adipocyte secretion is liable to nutritional and metabolic states, where defective circuitry, impaired neuroplasticity, and elevated neuroinflammation are symptomatic. Essentially, neurotrophic and anti-inflammatory properties of adipokines underlie their neuroprotective roles in neurodegenerative diseases. Besides, adipocyte-secreted lipids in the bloodstream can act endocrine on the distant organs. In this article, we have reviewed five adipokines (leptin, adiponectin, chemerin, apelin, visfatin) and two lipokines (palmitoleic acid and lysophosphatidic acid) on their roles involving in eating behavior, neurotrophic and neuroprotective factors in the brain. Understanding and regulating these adipokines can lead to novel therapeutic strategies to counteract metabolic associated eating disorders and neurodegenerative diseases, thus promote brain health.


Asunto(s)
Adipoquinas/metabolismo , Encéfalo/metabolismo , Enfermedades Neurodegenerativas/etiología , Adipocitos/metabolismo , Animales , Encéfalo/patología , Humanos , Transducción de Señal
12.
Scand J Med Sci Sports ; 28(3): 1130-1138, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29205515

RESUMEN

Metabolic syndrome (MetS) is associated with diabetes mellitus and cardiovascular diseases. Our previous study indicated that people with MetS showed a decrease in waist circumference and a decreasing trend in blood pressure after 1-year yoga. This study investigated the effect of yoga on MetS people with high-normal blood pressure by exploring modulations in proinflammatory adipokines (leptin, chemerin, visfatin, and plasminogen activator inhibitor-1 or PAI-1) and an anti-inflammatory adipokine (adiponectin). A total of 97 Hong Kong Chinese individuals aged 57.6 ± 9.1 years with MetS and high-normal blood pressure were randomly assigned to control (n = 45) and yoga groups (n = 52). Participants in the control group were not given any intervention but were contacted monthly to monitor their health status. Participants in the yoga group underwent a yoga training program with three 1-hour yoga sessions weekly for 1 year. The participants' sera were harvested and assessed for adipokines. Generalized estimating equation (GEE) was used to examine the interaction effect between 1-year time (pre vs post), and intervention (control vs yoga). GEE analyses revealed significant interaction effects between 1-year time and yoga intervention for the decreases in leptin and chemerin and the increase in adiponectin concentration in the sera examined. These results demonstrated that 1-year yoga training decreased proinflammatory adipokines and increased anti-inflammatory adipokine in adults with MetS and high-normal blood pressure. These findings support the beneficial role of yoga in managing MetS by favorably modulating adipokines.


Asunto(s)
Adipoquinas/sangre , Hipertensión/sangre , Síndrome Metabólico/sangre , Yoga , Anciano , Quimiocinas/sangre , Femenino , Humanos , Péptidos y Proteínas de Señalización Intercelular/sangre , Leptina/sangre , Masculino , Persona de Mediana Edad , Nicotinamida Fosforribosiltransferasa/sangre , Inhibidor 1 de Activador Plasminogénico/sangre , Factores de Riesgo
13.
Int J Mol Sci ; 19(11)2018 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-30423881

RESUMEN

As a cellular energy sensor and regulator, adenosine monophosphate (AMP)-activated protein kinase (AMPK) plays a pivotal role in the regulation of energy homeostasis in both the central nervous system (CNS) and peripheral organs. Activation of hypothalamic AMPK maintains energy balance by inducing appetite to increase food intake and diminishing adaptive thermogenesis in adipose tissues to reduce energy expenditure in response to food deprivation. Numerous metabolic hormones, such as leptin, adiponectin, ghrelin and insulin, exert their energy regulatory effects through hypothalamic AMPK via integration with the neural circuits. Although activation of AMPK in peripheral tissues is able to promote fatty acid oxidation and insulin sensitivity, its chronic activation in the hypothalamus causes obesity by inducing hyperphagia in both humans and rodents. In this review, we discuss the role of hypothalamic AMPK in mediating hormonal regulation of feeding and adaptive thermogenesis, and summarize the diverse underlying mechanisms by which central AMPK maintains energy homeostasis.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Metabolismo Energético , Hormonas/metabolismo , Hipotálamo/enzimología , Animales , Ingestión de Alimentos , Humanos
14.
Diabetologia ; 60(3): 464-474, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28011992

RESUMEN

AIMS/HYPOTHESIS: Beta cell inflammation and demise is a feature of type 1 diabetes. The insulin-sensitising molecule 'adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1' (APPL1), which contains an NH2-terminal Bin/Amphiphysin/Rvs domain, a central pleckstrin homology domain and a COOH-terminal phosphotyrosine-binding domain, has been shown to modulate inflammatory response in various cell types but its role in regulating beta cell mass and inflammation in type 1 diabetes remains unknown. Thus, we investigated whether APPL1 prevents beta cell apoptosis and inflammation in diabetes. METHODS: Appl1-knockout mice and their wild-type littermates, as well as C57BL/6N mice injected with adeno-associated virus encoding APPL1 or green fluorescent protein, were treated with multiple-low-dose streptozotocin (MLDS) to induce experimental type 1 diabetes. Their glucose metabolism and beta cell function were assessed. The effect of APPL1 deficiency on beta cell function upon exposure to a diabetogenic cytokine cocktail (CKS; consisting of TNF-α, IL-1ß and IFN-γ) was assessed ex vivo. RESULTS: Expression of APPL1 was significantly reduced in pancreatic islets from mouse models of type 1 diabetes or islets treated with CKS. Hyperglycaemia, beta cell loss and insulitis induced by MLDS were exacerbated by genetic deletion of Appl1 but were alleviated by beta cell-specific overexpression of APPL1. APPL1 preserved beta cell mass by reducing beta cell apoptosis upon treatment with MLDS. Mechanistically, APPL1 deficiency potentiate CKS-induced phosphorylation of NFκB inhibitor, α (IκBα) and subsequent phosphorylation and transcriptional activation of p65, leading to a dramatic induction of NFκB-regulated apoptotic and proinflammatory programs in beta cells. Pharmacological inhibition of NFκB or inducible NO synthase (iNOS) largely abrogate the detrimental effects of APPL1 deficiency on beta cell functions. CONCLUSIONS/INTERPRETATION: APPL1 negatively regulates inflammation and apoptosis in pancreatic beta cells by dampening the NFκB-iNOS-NO axis, representing a promising target for treating type 1 diabetes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Inflamación/metabolismo , FN-kappa B/metabolismo , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Apoptosis/genética , Apoptosis/fisiología , Caspasa 3/genética , Caspasa 3/metabolismo , Línea Celular , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Diabetes Mellitus Tipo 1/genética , Células HEK293 , Humanos , Inmunohistoquímica , Inflamación/genética , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxidos de Nitrógeno/metabolismo , Páncreas/metabolismo , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/genética , Transducción de Señal/fisiología , Estreptozocina/toxicidad
15.
Chemistry ; 23(54): 13342-13350, 2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-28644514

RESUMEN

We report a new class of functionalized polylutidine polymers that are prepared by chemical vapor deposition polymerization of substituted [2](1,4)benzeno[2](2,5)pyridinophanes. To prepare sufficient amounts of monomer for CVD polymerization, a new synthesis route for ethynylpyridinophane has been developed in three steps with an overall yield of 59 %. Subsequent CVD polymerization yielded well-defined films of poly(2,5-lutidinylene-co-p-xylylene) and poly(4-ethynyl-2,5-lutidinylene-co-p-xylylene). All polymers were characterized by infrared reflection-absorption spectroscopy, ellipsometry, contact angle studies, and X-ray photoelectron spectroscopy. Moreover, ζ-potential measurements revealed that polylutidine films have higher isoelectric points than the corresponding poly-xylylene surfaces owing to the nitrogen atoms in the polymer backbone. The availability of reactive alkyne groups on the surface of poly(4-ethynyl-2,5-lutidinylene-co-p-xylylene) coatings was confirmed by spatially controlled surface modification by means of Huisgen 1,3-dipolar cycloaddition. Compared to the more hydrophobic poly-p-xylylyenes, the presence of the heteroatom in the polymer backbone of polylutidine polymers resulted in surfaces that supported an increased adhesion of primary human umbilical vein endothelial cells (HUVECs). Vapor-based polylutidine coatings are a new class of polymers that feature increased hydrophilicity and increased cell adhesion without limiting the flexibility in selecting appropriate functional side groups.

16.
Langmuir ; 33(25): 6322-6332, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28574709

RESUMEN

Biomaterial surfaces can possess chemical, topographical, or electrostatic heterogeneity, which can profoundly influence their performance. By developing experimental models that reliably simulate this nanoscale heterogeneity, we can predict how heterogeneous surfaces are transformed by their interactions with the dynamic physiological environment. In this work, we present a model surface where well-defined glycopolymer brushes are interspersed with positively charged binding sites, giving rise to an interface presenting a mixture of repulsive and adhesive cues to an approaching virus particle. We show that the density of the affinity sites relative to the glycopolymer brushes can be tuned precisely by modifying the chemical vapor deposition (CVD) copolymerization conditions. Further, we examined the effects of binding site density and glycopolymer brush architecture on the adsorption kinetics of virus-like nanoparticles through a novel approach employing time-resolved ζ-potential measurements. Most materials have charge-bearing, dynamic surfaces that are sensitive to electrostatic effects. Hence, adsorption-triggered changes in ζ-potential measurements can be captured in real time to monitor interfacial events. Real-time ζ-potential measurements present an interesting platform to probe the structure and function of chemically and electrostatically heterogeneous polymer interfaces. To validate this electrokinetic method, we examined the effect of neutravidin concentration on its rate of binding to biotinylated surfaces using ζ-potential and compared our results with QCM studies. By applying electrokinetic methods to examine the roles of glycopolymer brush architecture and surface charge of these tunable glycopolymer coatings, we can enhance our understanding of the interactions of viruses with heterogeneous biomaterial interfaces.

17.
Angew Chem Int Ed Engl ; 56(1): 203-207, 2017 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-27900826

RESUMEN

Polymers prepared by chemical vapor deposition (CVD) polymerization have found broad acceptance in research and industrial applications. However, their intrinsic lack of degradability has limited wider applicability in many areas, such as biomedical devices or regenerative medicine. Herein, we demonstrate, for the first time, a backbone-degradable polymer directly synthesized via CVD. The CVD co-polymerization of [2.2]para-cyclophanes with cyclic ketene acetals, specifically 5,6-benzo-2-methylene-1,3-dioxepane (BMDO), results in well-defined, hydrolytically degradable polymers, as confirmed by FTIR spectroscopy and ellipsometry. The degradation kinetics are dependent on the ratio of ketene acetals to [2.2]para-cyclophanes as well as the hydrophobicity of the films. These coatings address an unmet need in the biomedical polymer field, as they provide access to a wide range of reactive polymer coatings that combine interfacial multifunctionality with degradability.


Asunto(s)
Acetales/química , Técnicas de Química Sintética/métodos , Éteres Cíclicos/química , Etilenos/química , Cetonas/química , Piperidinas/química , Polimerizacion , Polímeros/química , Acetales/síntesis química , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Ciclización , Éteres Cíclicos/síntesis química , Etilenos/síntesis química , Cetonas/síntesis química , Oxepinas/síntesis química , Oxepinas/química , Piperidinas/síntesis química , Polímeros/síntesis química , Volatilización
18.
Clin Sci (Lond) ; 130(22): 2087-2100, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27512097

RESUMEN

Both atherosclerosis and obesity, an independent atherosclerotic risk factor, are associated with enhanced systemic inflammation. Obesity is also characterized by increased adipose tissue inflammation. However, the molecular mechanism underlying the accelerated atherosclerosis in obesity remains unclear. In obesity, activation of c-Jun N-terminal kinase (JNK) contributes to adipose tissue inflammation. The present study investigated whether the suppression of fat inflammation through adipose-specific JNK inactivation could protect against atherosclerosis in mice. ApoE-/- mice were cross-bred with transgenic mice with adipose-specific expression of a dominant negative form of JNK (dnJNK) to generate apoE-/-/dnJNK (ADJ) mice. ADJ mice treated with a high-fat-high-cholesterol diet exhibited significant attenuations of visceral fat and systemic inflammation without changes in lipid or glucose metabolism, and were protected against atherosclerosis, when compared with apoE-/- mice. Lean apoE-/- mice that received transplantation of visceral fat from obese wild-type donor mice for 4 weeks showed exacerbated systemic inflammation and atherosclerotic plaque formation. Conversely, apoE-/- recipients carrying a visceral fat graft from obese dnJNK donors were protected against enhanced systemic inflammation and atherogenesis. The beneficial effects of adipose-specific JNK inactivation on atherogenesis in apoE-/- recipients were significantly compromised by continuous infusion of recombinant adipocyte-fatty acid-binding protein (A-FABP), previously shown to interact with JNK via a positive feedback loop to modulate inflammatory responses. Together these data suggested that enhanced atherosclerosis in obesity can be attributed, at least in part, to a distant cross-talk between visceral fat and the vasculature, mediated by the release of proinflammatory cytokines, such as A-FABP, from the inflamed visceral adipose tissue with JNK activation.


Asunto(s)
Tejido Adiposo/enzimología , Apolipoproteínas E/deficiencia , Aterosclerosis/enzimología , MAP Quinasa Quinasa 4/inmunología , Obesidad/complicaciones , Tejido Adiposo/inmunología , Animales , Apolipoproteínas E/genética , Aterosclerosis/etiología , Aterosclerosis/genética , Aterosclerosis/inmunología , Humanos , MAP Quinasa Quinasa 4/genética , Masculino , Ratones , Ratones Noqueados , Obesidad/genética , Obesidad/inmunología
19.
PLoS Biol ; 11(4): e1001541, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23630453

RESUMEN

Diabetes is a metabolic disorder characterized by hyperglycemia. Insulin, which is secreted by pancreatic beta cells, is recognized as the critical regulator of blood glucose, but the molecular machinery responsible for insulin trafficking remains poorly defined. In particular, the roles of cytosolic factors that govern the formation and maturation of insulin granules are unclear. Here we report that PICK1 and ICA69, two cytosolic lipid-binding proteins, formed heteromeric BAR-domain complexes that associated with insulin granules at different stages of their maturation. PICK1-ICA69 heteromeric complexes associated with immature secretory granules near the trans-Golgi network (TGN). A brief treatment of Brefeldin A, which blocks vesicle budding from the Golgi, increased the amount of PICK1 and ICA69 at TGN. On the other hand, mature secretory granules were associated with PICK1 only, not ICA69. PICK1 deficiency in mice caused the complete loss of ICA69 and led to increased food and water intake but lower body weight. Glucose tolerance tests demonstrated that these mutant mice had high blood glucose, a consequence of insufficient insulin. Importantly, while the total insulin level was reduced in PICK1-deficient beta cells, proinsulin was increased. Lastly, ICA69 knockout mice also displayed similar phenotype as the mice deficient in PICK1. Together, our results indicate that PICK1 and ICA69 are key regulators of the formation and maturation of insulin granules.


Asunto(s)
Autoantígenos/fisiología , Proteínas Portadoras/fisiología , Intolerancia a la Glucosa/metabolismo , Insulina/metabolismo , Proteínas Nucleares/fisiología , Vesículas Secretoras/metabolismo , Animales , Proteínas de Ciclo Celular , Línea Celular , Glucosa/metabolismo , Insulina/deficiencia , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Páncreas/metabolismo , Páncreas/patología , Cultivo Primario de Células , Proinsulina/metabolismo , Unión Proteica , Transporte de Proteínas , Ratas
20.
EMBO Rep ; 15(6): 714-22, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24711543

RESUMEN

While molecular regulation of insulin granule exocytosis is relatively well understood, insulin granule biogenesis and maturation and its influence on glucose homeostasis are relatively unclear. Here, we identify a novel protein highly expressed in insulin-secreting cells and name it BIG3 due to its similarity to BIG/GBF of the Arf-GTP exchange factor (GEF) family. BIG3 is predominantly localized to insulin- and clathrin-positive trans-Golgi network (TGN) compartments. BIG3-deficient insulin-secreting cells display increased insulin content and granule number and elevated insulin secretion upon stimulation. Moreover, BIG3 deficiency results in faster processing of proinsulin to insulin and chromogranin A to ß-granin in ß-cells. BIG3-knockout mice exhibit postprandial hyperinsulinemia, hyperglycemia, impaired glucose tolerance, and insulin resistance. Collectively, these results demonstrate that BIG3 negatively modulates insulin granule biogenesis and insulin secretion and participates in the regulation of systemic glucose homeostasis.


Asunto(s)
Homeostasis/genética , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas/metabolismo , Vesículas Secretoras/química , Animales , Calorimetría Indirecta , Glucosa/fisiología , Homeostasis/fisiología , Hiperglucemia/genética , Insulina/análisis , Resistencia a la Insulina/genética , Secreción de Insulina , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Noqueados , Proteínas/genética , Red trans-Golgi/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA