Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 463(4): 686-92, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26047695

RESUMEN

Adherens junctions are known for their role in mediating cell-cell adhesion. DE-cadherin and Echinoid are the principle adhesion molecules of adherens junctions in Drosophila epithelia. Here, using live imaging to trace the movement of endocytosed Echinoid vesicles in the epithelial cells of Drosophila embryos, we demonstrate that Echinoid vesicles co-localize and move with Rab5-or Rab11-positive endosomes. Surprisingly, these Echinoid-containing endosomes undergo directional cell-to-cell movement, through adherens junctions. Consistent with this, cell-to-cell movement of Echinoid vesicles requires the presence of DE-cadherin at adherens junctions. Live imaging further revealed that Echinoid vesicles move along adherens junction-associated microtubules into adjacent cells, a process requiring a kinesin motor. Importantly, DE-cadherin- and EGFR-containing vesicles also exhibit intercellular movement. Together, our results unveil a transport function of adherens junctions. Furthermore, this adherens junctions-based intercellular transport provides a platform for the exchange of junctional proteins and signaling receptors between neighboring cells.


Asunto(s)
Uniones Adherentes/fisiología , Drosophila/metabolismo , Animales , Transporte Biológico , Cadherinas/metabolismo , Drosophila/embriología , Endosomas/metabolismo , Receptores ErbB/metabolismo , Proteínas Fluorescentes Verdes/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-34281066

RESUMEN

Nitrification inhibitors (NIs) such as dicyandiamide (DCD), 3,4-dimethylpyrazole phosphate (DMPP), and allylthiourea (AT) are commonly used to suppress ammonia oxidization at different time scales varying from a few hours to several months. Although the responses of NIs to edaphic and temperature conditions have been studied, the influence of the aforementioned factors on their inhibitory effect remains unknown. In this study, laboratory-scale experiments were conducted to assess the short-term (24 h) influence of eight abiotic and biotic factors on the inhibitory effects of DCD, DMPP, and AT across six cropped and non-cropped soils at two temperature conditions with three covariates of soil texture. Simultaneously, the dominant contributions of ammonia-oxidizing archaea (AOA) and bacteria (AOB) to potential ammonia oxidization (PAO) were distinguished using the specific inhibitor 2 phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO). Our results revealed that AT demonstrated a considerably greater inhibitory effect (up to 94.9% for an application rate of 75 mg of NI/kg of dry soil) than DCD and DMPP. The inhibitory effect of AT was considerably affected by the relative proportions of silt, sand, and clay in the soil and total PAO. In contrast to previous studies, the inhibitory effects of all three NIs remained largely unaffected by the landcover type and temperature conditions for the incubation period of 24 h. Furthermore, the efficacy of all three tested NIs was not affected by the differential contributions of AOA and AOB to PAO. Collectively, our results suggested a limited influence of temperature on the inhibitory effects of all three NIs but a moderate dependence of AT on the soil texture and PAO. Our findings can enhance the estimation of the inhibitory effect in soil, and pure cultures targeting the AOA and AOB supported ammonia oxidization and, hence, nitrogen dynamics under NI applications.


Asunto(s)
Nitrificación , Suelo , Amoníaco/análisis , Guanidinas , Oxidación-Reducción , Fosfatos , Pirazoles , Microbiología del Suelo , Tiourea/análogos & derivados
3.
Sci Total Environ ; 751: 141721, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-32861948

RESUMEN

Globally, soils are subject to radical changes in their biogeochemistry as rampant deforestation and other forms of land use and climate change continue to transform planet Earth. To better understand soil ecosystem functioning, it is necessary to understand the responses of soil microbial diversity and community structure to changing climate, land cover, and associated environmental variables. With next-generation sequencing, we investigated changes in topsoil fungi community structure among different land cover types (from Forest to Cropland) and climate zones (from Hot to Cold zones) in the Western Pacific Region. We demonstrated that climate zones substantially (P = 0.001) altered the soil fungal beta-diversity (change in community composition), but not alpha-diversity (taxonomical diversity). In particular, precipitation, temperature, and also latitude were the best predictors of beta-diversity. Individual fungal classes displayed divergent but strong responses to climate variables and latitude, suggesting niche differentiation at lower taxonomic levels. We also demonstrated that fungal taxonomic diversity differentially responded to latitude across land covers: fungal diversity increased towards lower latitudes in the Forest and Cropland (R2 = 0.19) but increased towards both lower and higher latitudes in Fallow land (R2 = 0.45). Further, alpha-diversity was significantly influenced by soil pH in Forest (P = 0.02), and by diurnal temperature range in Fallow land and mean annual precipitation in Cropland. Collectively, various land cover types had differential influence on the latitude diversity gradient, while climate, and to some extent, edaphic variables, were crucial in shaping soil fungal community structure. Our results can also serve as a baseline for estimating global change impacts on fungal community structure in the Western Pacific Region.


Asunto(s)
Micobioma , Cambio Climático , Ecosistema , Bosques , Suelo , Microbiología del Suelo
4.
Genetics ; 206(2): 985-992, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28428287

RESUMEN

Drosophila dorsal closure is a morphogenetic movement that involves flanking epidermal cells, assembling actomyosin cables, and migrating dorsally over the underlying amnioserosa to seal at the dorsal midline. Echinoid (Ed)-a cell adhesion molecule of adherens junctions (AJs)-participates in several developmental processes. The disappearance of Ed from the amnioserosa is required to define the epidermal leading edge for actomyosin cable assembly and coordinated cell migration. However, the mechanism by which Ed is cleared from amnioserosa is unknown. Here, we show that Ed is cleared in amnioserosa by both transcriptional and post-translational mechanisms. First, Ed mRNA transcription was repressed in amnioserosa prior to the onset of dorsal closure. Second, the ubiquitin ligase Smurf downregulated pretranslated Ed by binding to the PPXY motif of Ed. During dorsal closure, Smurf colocalized with Ed at AJs, and Smurf overexpression prematurely degraded Ed in the amnioserosa. Conversely, Ed persisted in the amnioserosa of Smurf mutant embryos, which, in turn, affected actomyosin cable formation. Together, our results demonstrate that transcriptional repression of Ed followed by Smurf-mediated downregulation of pretranslated Ed in amnioserosa regulates the establishment of a taut leading edge during dorsal closure.


Asunto(s)
Moléculas de Adhesión Celular/genética , Proteínas de Drosophila/genética , Desarrollo Embrionario/genética , Morfogénesis/genética , Proteínas Represoras/genética , Transcripción Genética , Ubiquitina-Proteína Ligasas/genética , Actomiosina/genética , Animales , Adhesión Celular/genética , Moléculas de Adhesión Celular/biosíntesis , Movimiento Celular/genética , Proteínas de Drosophila/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Mutación , Unión Proteica , Procesamiento Proteico-Postraduccional/genética , ARN Mensajero/biosíntesis , Proteínas Represoras/biosíntesis , Ubiquitina-Proteína Ligasas/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA