Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Arch Pharm (Weinheim) ; 356(3): e2200409, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36446720

RESUMEN

Herein we report the synthesis of 21 novel small molecules inspired by metronidazole and Schiff base compounds. The compounds were evaluated against Trichomonas vaginalis and cross-screened against other pathogenic protozoans of clinical relevance. Most of these compounds were potent against T. vaginalis, exhibiting IC50 values < 5 µM. Compound 20, the most active compound against T. vaginalis, exhibited an IC50 value of 3.4 µM. A few compounds also exhibited activity against Plasmodium falciparum and Trypanosomal brucei brucei, with compound 6 exhibiting an IC50 value of 0.7 µM against P. falciparum and compound 22 exhibiting an IC50 value of 1.4 µM against T.b. brucei. Compound 22 is a broad-spectrum antiprotozoal agent, showing activities against all three pathogenic protozoans under investigation.


Asunto(s)
Antiprotozoarios , Malaria Falciparum , Trichomonas vaginalis , Humanos , Metronidazol/farmacología , Bases de Schiff/farmacología , Relación Estructura-Actividad , Antiprotozoarios/farmacología
2.
Mikrochim Acta ; 189(9): 322, 2022 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-35932340

RESUMEN

α-Amanitin is often considered the most poisonous mushroom toxin produced by various mushroom species, which are hard to identify from edible, non-toxic mushrooms. Conventional detection methods require expensive and bulky equipment or fail to meet high analytical sensitivity. We developed a smartphone-based fluorescence microscope platform to detect α-amanitin from dry mushroom tissues. Antibody-nanoparticle conjugates were captured by immobilized antigen-hapten conjugates while competing with the free analytes in the sample. Captured fluorescent nanoparticles were excited at 460 nm and imaged at 500 nm. The pixel numbers of such nanoparticles in the test zone were counted, showing a decreasing trend with increasing analyte concentration. The detection method exhibited a low detection limit (1 pg/mL), high specificity, and selectivity, allowing us to utilize a simple rinsing for toxin extraction and avoiding the need for high-speed centrifugation. In addition, this assay's short response time and portable features enable field detection of α-amanitin from amanitin-producing mushrooms.


Asunto(s)
Alfa-Amanitina , Toxinas Biológicas , Amanita , Inmunoensayo , Microfluídica , Teléfono Inteligente
3.
Virol J ; 17(1): 43, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32234060

RESUMEN

BACKGROUND: Zika virus (ZIKV) is a major human pathogen and member of the Flavivirus genus. Previous studies have identified neutralizing antibodies from Zika patients that bind to quaternary epitopes across neighboring envelope (E) proteins, called E dimer epitopes (EDE). An asparagine-linked glycan on the "glycan loop" (GL) of the ZIKV envelope protein protects the functionally important "fusion loop" on the opposite E subunit in the dimer, and EDE antibodies have been shown to bind to both of these loops. Human EDE antibodies have been divided into two subclasses based on how they bind to the glycan loop region: EDE1 antibodies do not require glycosylation for binding, while EDE2 antibodies strongly rely on the glycan for binding. METHODS: ZIKV GL was expressed on tobacco mosaic virus nanoparticles. Mice were immunized with GL or full-length monomeric E and the immune response was analyzed by testing the ability of sera and monoclonal antibodies to bind to GL and to neutralize ZIKV in in vitro cellular assay. RESULTS: We report here the existence of ZIKV moderately neutralizing antibodies that bind to E monomers through epitopes that include the glycan loop. We show that sera from human Zika patients contain antibodies capable of binding to the unglycosylated glycan loop in the absence of the rest of the envelope protein. Furthermore, mice were inoculated with recombinant E monomers and produced neutralizing antibodies that either recognize unglycosylated glycan loop or require glycan for their binding to monomeric E. We demonstrate that both types of antibodies neutralize ZIKV to some extent in a cellular virus neutralization assay. CONCLUSIONS: Analogous to the existing EDE antibody nomenclature, we propose a new classification for antibodies that bind to E monomer epitopes (EME): EME1 and EME2 for those that do not require and those that do require glycan for binding to E, respectively.


Asunto(s)
Anticuerpos Antivirales/inmunología , Polisacáridos/inmunología , Proteínas del Envoltorio Viral/inmunología , Virus Zika/química , Virus Zika/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Sitios de Unión de Anticuerpos , Epítopos/inmunología , Femenino , Glicosilación , Humanos , Inmunogenicidad Vacunal , Ratones , Ratones Endogámicos BALB C , Nanopartículas/química , Pruebas de Neutralización , Polisacáridos/genética , Virus del Mosaico del Tabaco/genética , Infección por el Virus Zika/virología
4.
Molecules ; 25(13)2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32646028

RESUMEN

Plant-derived anthraquinones were evaluated in cell assays for their inhibitory activities against the parasitic protozoa Trichomonas vaginalis human strain G3 that causes the sexually transmitted disease trichomoniasis in women, Tritrichomonas foetus bovine strain D1 that causes sexually transmitted diseases in farm animals (bulls, cows, and pigs), Tritrichomonas foetus-like strain C1 that causes diarrhea in domestic animals (cats and dogs), and bacteria and fungi. The anthraquinones assessed for their inhibitory activity were anthraquinone, aloe-emodin (1,8-dihydroxy-3-hydroxymethylanthraquinone), anthrarufin (1,5-dihydroxyanthraquinone), chrysazin (1,8-dihydroxyanthraquinone), emodin (1,3,8-trihydroxy-6-methylanthraquinone), purpurin (1,2,4-trihydroxyanthraquinone), and rhein (1,8-dihydroxy-3-carboxyanthraquinone). Their activities were determined in terms of IC50 values, defined as the concentration that inhibits 50% of the cells under the test conditions and calculated from linear dose response plots for the parasitic protozoa, and zone of inhibition for bacteria and fungi, respectively. The results show that the different substituents on the anthraquinone ring seem to influence the relative potency. Analysis of the structure-activity relationships in protozoa indicates that the aloe-emodin and chrysazin with the highest biological activities merit further study for their potential to help treat the diseases in women and domestic and farm animals. Emodin also exhibited antifungal activity against Candida albicans. The suggested mechanism of action and the additional reported beneficial biological properties of anthraquinones suggest that they have the potential to ameliorate a broad spectrum of human diseases.


Asunto(s)
Antraquinonas , Antibacterianos , Antifúngicos , Antiprotozoarios , Candida albicans/crecimiento & desarrollo , Trichomonas vaginalis/crecimiento & desarrollo , Antraquinonas/síntesis química , Antraquinonas/química , Antraquinonas/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Antifúngicos/síntesis química , Antifúngicos/química , Antifúngicos/farmacología , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Antiprotozoarios/farmacología , Femenino , Humanos
5.
J Sci Food Agric ; 100(6): 2800-2806, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31975411

RESUMEN

BACKGROUND: Contamination of food or the environment by fungi, especially those resistant to conventional fungicides or drugs, represents a hazard to human health. The objective of this study is to identify safe, natural antifungal agents that can remove fungal pathogens or contaminants rapidly from food and / or environmental sources. RESULTS: Fifteen antifungal compounds (nine benzo derivatives as candidates; six conventional fungicides as references) were investigated. Three benzo analogs, namely octyl gallate (OG), trans-cinnamaldehyde (CA), and 2-hydroxy-5-methoxybenzaldehyde (2H5M), at 1 g L-1 (3.54 mmol), 1 mL L-1 (7.21 mmol), 1 mL L-1 (5.39 mmol), respectively, achieved ≥99.9% fungal death after 0.5, 2.5 or 24 h of treatments, respectively, in in vitro phosphate-buffered saline (PBS) bioassay. However, when OG, CA, and 2H5M were examined in commercial food matrices, organic apple, or grape juices, only CA maintained a similar level of antifungal activity, compared with a PBS bioassay. trans-Cinnamaldehyde showed higher antifungal activity at pH 3.5, equivalent to that of commercial fruit juices, than at pH 5.6. In soil sample tests, the application of 1 mL L-1 (7.21 mmol) CA to conventional maize / tomato soil samples (pH 6.8) for 2.5 h resulted in ≥99.9% fungal death, indicating CA could also eliminate fungal contaminants in soil. While the conventional fungicide thiabendazole exerted antifungal activity comparable to CA, thiabendazole enhanced the production of carcinogenic aflatoxins by Aspergillus flavus, an undesirable side effect. CONCLUSION: trans-Cinnamaldehyde could be developed as a potent antifungal agent in food processing or soil sanitation by reducing the time / cost necessary for fungal removal. Published 2020. This article is a U.S. Government work and is in the public domain in the USA.


Asunto(s)
Microbiología de Alimentos , Hongos/efectos de los fármacos , Fungicidas Industriales/farmacología , Microbiología del Suelo , Acroleína/análogos & derivados , Acroleína/farmacología , Aflatoxinas/biosíntesis , Aspergillus flavus/efectos de los fármacos , Aspergillus flavus/metabolismo , Benzaldehídos/farmacología , Contaminación de Alimentos , Jugos de Frutas y Vegetales/microbiología , Ácido Gálico/análogos & derivados , Ácido Gálico/farmacología , Concentración de Iones de Hidrógeno
6.
Chemistry ; 24(40): 10078-10090, 2018 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-29653033

RESUMEN

Fourteen novel arene RuII , and cyclopentadienyl (Cpx ) RhIII and IrIII complexes containing an N,N'-chelated pyridylimino- or quinolylimino ligand functionalized with the antimalarial drug sulfadoxine have been synthesized and characterized, including three by X-ray crystallography. The rhodium and iridium complexes exhibited potent antiplasmodial activity with IC50 values of 0.10-2.0 µm in either all, or one of the three Plasmodium falciparum assays (3D7 chloroquine sensitive, Dd2 chloroquine resistant and NF54 sexual late stage gametocytes) but were only moderately active towards Trichomonas vaginalis. They were active in both the asexual blood stage and the sexual late stage gametocyte assays, whereas the clinical parent drug, sulfadoxine, was inactive. Five complexes were moderately active against Mycobacterium tuberculosis (IC50 <6.3 µm), while sulfadoxine showed no antitubercular activity. An increase in the size of both the Cpx ligand and the aromatic imino substituent increased hydrophobicity, which resulted in an increase in antiplasmodial activity.

7.
Molecules ; 23(8)2018 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-30111695

RESUMEN

Due to the increased interest in their application in the treatment of infectious diseases, boron-containing compounds have received a significant coverage in the literature. Herein, a small set of novel cinnamoly-oxaborole amides were synthesized and screened against nagana Trypanosoma brucei brucei for antitrypanosomal activity. Compound 5g emerged as a new hit with an in vitro IC50 value of 0.086 µM against T. b. brucei without obvious inhibitory activity against HeLa cell lines. The same series was also screened against other human pathogens, including Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), for which moderate to weak activity (10 to >125 µM) was observed. Similarly, these compounds exhibited moderate activity against the human protozoal pathogen Trichomonas vaginalis with no observed effect on common microbiome bacterial species. The cross-species inhibitory activity presents the possibility of these compounds serving as broad-spectrum antibiotics for these prevalent three human pathogens.


Asunto(s)
Amidas/síntesis química , Antiinfecciosos/síntesis química , Compuestos de Boro/síntesis química , Cinamatos/síntesis química , Amidas/farmacología , Animales , Antiinfecciosos/farmacología , Compuestos de Boro/farmacología , Supervivencia Celular/efectos de los fármacos , Cinamatos/farmacología , Células HeLa , Humanos , Mycobacterium tuberculosis/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/síntesis química , Relación Estructura-Actividad , Trichomonas vaginalis/efectos de los fármacos , Tripanocidas/síntesis química , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Tripanosomiasis Africana/parasitología
8.
BMC Complement Altern Med ; 17(1): 461, 2017 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-28903731

RESUMEN

BACKGROUND: Plants produce secondary metabolites that often possess widespread bioactivity, and are then known as phytochemicals. We previously determined that several phytochemical-rich food-derived preparations were active against pathogenic foodborne bacteria. Trichomonads produce disease (trichomoniasis) in humans and in certain animals. Trichomonads are increasingly becoming resistant to conventional modes of treatment. It is of interest to test bioactive, natural compounds for efficacy against these pathogens. METHODS: Using a cell assay, black tea, green tea, grape, pomegranate, and jujube extracts, as well as whole dried jujube were tested against three trichomonads: Trichomonas vaginalis strain G3 (found in humans), Tritrichomonas foetus strain D1 (found in cattle), and Tritrichomonas foetus-like organism strain C1 (found in cats). The most effective of the test substances was subsequently tested against two metronidazole-resistant Trichomonas vaginalis strains, and on normal mucosal flora. RESULTS: Black tea extract inhibited all the tested trichomonads, but was most effective against the T. vaginalis organisms. Inhibition by black tea was correlated with the total and individual theaflavin content of the two tea extracts determined by HPLC. Metronidazole-resistant Trichomonas vaginalis strains were also inhibited by the black tea extract. The response of the organisms to the remaining preparations was variable and unique. We observed no effect of the black tea extract on common normal flora bacteria. CONCLUSIONS: The results suggest that the black tea, and to a lesser degree green tea, grape seed, and pomegranate extracts might present possible natural alternative therapeutic agents to treat Trichomonas vaginalis infections in humans and the related trichomonad infections in animals, without negatively affecting the normal flora.


Asunto(s)
Enfermedades de los Gatos/microbiología , Enfermedades de los Bovinos/microbiología , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Tricomoniasis/microbiología , Tricomoniasis/veterinaria , Trichomonas vaginalis/efectos de los fármacos , Tritrichomonas foetus/efectos de los fármacos , Animales , Camellia sinensis/química , Gatos , Bovinos , Humanos , Lythraceae/química , Viabilidad Microbiana/efectos de los fármacos , Trichomonas vaginalis/genética , Trichomonas vaginalis/crecimiento & desarrollo , Trichomonas vaginalis/aislamiento & purificación , Tritrichomonas foetus/genética , Tritrichomonas foetus/crecimiento & desarrollo , Tritrichomonas foetus/aislamiento & purificación , Vitis/química , Ziziphus/química
9.
Molecules ; 22(10)2017 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-29065462

RESUMEN

Disruption of fungal cell wall should be an effective intervention strategy. However, the cell wall-disrupting echinocandin drugs, such as caspofungin (CAS), cannot exterminate filamentous fungal pathogens during treatment. For potency improvement of cell wall-disrupting agents (CAS, octyl gallate (OG)), antifungal efficacy of thirty-three cinnamic acid derivatives was investigated against Saccharomyces cerevisiaeslt2Δ, bck1Δ, mutants of the mitogen-activated protein kinase (MAPK), and MAPK kinase kinase, respectively, in cell wall integrity system, and glr1Δ, mutant of CAS-responsive glutathione reductase. Cell wall mutants were highly susceptible to four cinnamic acids (4-chloro-α-methyl-, 4-methoxy-, 4-methyl-, 3-methylcinnamic acids), where 4-chloro-α-methyl- and 4-methylcinnamic acids possessed the highest activity. Structure-activity relationship revealed that 4-methylcinnamic acid, the deoxygenated structure of 4-methoxycinnamic acid, overcame tolerance of glr1Δ to 4-methoxycinnamic acid, indicating the significance of para substitution of methyl moiety for effective fungal control. The potential of compounds as chemosensitizers (intervention catalysts) to cell wall disruptants (viz., 4-chloro-α-methyl- or 4-methylcinnamic acids + CAS or OG) was assessed according to Clinical Laboratory Standards Institute M38-A. Synergistic chemosensitization greatly lowers minimum inhibitory concentrations of the co-administered drug/agents. 4-Chloro-α-methylcinnamic acid further overcame fludioxonil tolerance of Aspergillus fumigatus antioxidant MAPK mutants (sakAΔ, mpkCΔ). Collectively, 4-chloro-α-methyl- and 4-methylcinnamic acids possess chemosensitizing capability to augment antifungal efficacy of conventional drug/agents, thus could be developed as target-based (i.e., cell wall disruption) intervention catalysts.


Asunto(s)
Antifúngicos/farmacología , Pared Celular/efectos de los fármacos , Cinamatos/farmacología , Hongos/efectos de los fármacos , Antifúngicos/química , Caspofungina , Pared Celular/química , Cinamatos/química , Dioxoles/farmacología , Tolerancia a Medicamentos/genética , Equinocandinas/química , Hongos/patogenicidad , Lipopéptidos/química , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Mutación , Pirroles/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Relación Estructura-Actividad
10.
Cell Microbiol ; 17(8): 1133-43, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25640773

RESUMEN

Botulinum neurotoxins (BoNTs) are some of the most poisonous natural toxins. Botulinum neurotoxins associate with neurotoxin-associated proteins (NAPs) forming large complexes that are protected from the harsh environment of the gastrointestinal tract. However, it is still unclear how BoNT complexes as large as 900 kDa traverse the epithelial barrier and what role NAPs play in toxin translocation. In this study, we examined the transit of BoNT serotype A (BoNT/A) holotoxin, complex and recombinantly purified NAP complex through cultured and polarized Caco-2 cells and, for the first time, in the small mouse intestine. Botulinum neurotoxin serotype A and NAPs in the toxin complex were detectable inside intestinal cells beginning at 2 h post intoxication. Appearance of the BoNT/A holotoxin signal was slower, with detection starting at 4-6 h. This indicated that the holotoxin alone was sufficient for entry but the presence of NAPs enhanced the rate of entry. Botulinum neurotoxin serotype A detection peaked at approximately 6 and 8 h for complex and holotoxin, respectively, and thereafter began to disperse with some toxin remaining in the epithelia after 24 h. Purified HA complexes alone were also internalized and followed a similar time course to that of BoNT/A complex internalization. However, recombinant HA complexes did not enhance BoNT/A holotoxin entry in the absence of a physical link with BoNT/A. We propose a model for BoNT/A toxin complex translocation whereby toxin complex entry is facilitated by NAPs in a receptor-mediated mechanism. Understanding the intestinal uptake of BoNT complexes will aid the development of new measures to prevent or treat oral intoxications.


Asunto(s)
Toxinas Botulínicas Tipo A/metabolismo , Proteínas Portadoras/metabolismo , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Sustancias Macromoleculares/metabolismo , Animales , Células CACO-2 , Humanos , Ratones , Modelos Biológicos , Transporte de Proteínas , Factores de Tiempo
11.
Anal Chem ; 87(2): 922-8, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25521812

RESUMEN

We present an innovative centrifugal microfluidic immunoassay platform (SpinDx) to address the urgent biodefense and public health need for ultrasensitive point-of-care/incident detection of botulinum toxin. The simple, sample-to-answer centrifugal microfluidic immunoassay approach is based on binding of toxins to antibody-laden capture particles followed by sedimentation of the particles through a density-media in a microfluidic disk and quantification by laser-induced fluorescence. A blind, head-to-head comparison study of SpinDx versus the gold-standard mouse bioassay demonstrates 100-fold improvement in sensitivity (limit of detection = 0.09 pg/mL), while achieving total sample-to-answer time of <30 min with 2-µL required volume of the unprocessed sample. We further demonstrate quantification of botulinum toxin in both exogeneous (human blood and serum spiked with toxins) and endogeneous (serum from mice intoxicated via oral, intranasal, and intravenous routes) samples. SpinDx can analyze, without any sample preparation, multiple sample types including whole blood, serum, and food. It is readily expandable to additional analytes as the assay reagents (i.e., the capture beads and detection antibodies) are disconnected from the disk architecture and the reader, facilitating rapid development of new assays. SpinDx can also serve as a general-purpose immunoassay platform applicable to diagnosis of other conditions and diseases.


Asunto(s)
Toxinas Botulínicas/sangre , Toxinas Botulínicas/química , Inmunoensayo/instrumentación , Microfluídica/instrumentación , Animales , Toxinas Botulínicas/inmunología , Femenino , Análisis de los Alimentos , Humanos , Ratones
12.
PLoS Pathog ; 9(10): e1003690, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24130488

RESUMEN

Botulinum neurotoxins (BoNTs) are produced by Clostridium botulinum and cause the fatal disease botulism, a flaccid paralysis of the muscle. BoNTs are released together with several auxiliary proteins as progenitor toxin complexes (PTCs) to become highly potent oral poisons. Here, we report the structure of a ∼760 kDa 14-subunit large PTC of serotype A (L-PTC/A) and reveal insight into its absorption mechanism. Using a combination of X-ray crystallography, electron microscopy, and functional studies, we found that L-PTC/A consists of two structurally and functionally independent sub-complexes. A hetero-dimeric 290 kDa complex protects BoNT, while a hetero-dodecameric 470 kDa complex facilitates its absorption in the harsh environment of the gastrointestinal tract. BoNT absorption is mediated by nine glycan-binding sites on the dodecameric sub-complex that forms multivalent interactions with carbohydrate receptors on intestinal epithelial cells. We identified monosaccharides that blocked oral BoNT intoxication in mice, which suggests a new strategy for the development of preventive countermeasures for BoNTs based on carbohydrate receptor mimicry.


Asunto(s)
Toxinas Botulínicas , Botulismo , Complejos Multiproteicos , Animales , Toxinas Botulínicas/química , Toxinas Botulínicas/genética , Toxinas Botulínicas/toxicidad , Clostridium botulinum/genética , Clostridium botulinum/metabolismo , Femenino , Ratones , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/toxicidad , Estructura Cuaternaria de Proteína , Relación Estructura-Actividad
13.
Anal Chem ; 85(11): 5569-76, 2013 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-23656526

RESUMEN

Botulinum neurotoxins (BoNTs) are used in a wide variety of medical applications, but there is limited pharmacokinetic data on active BoNT. Monitoring BoNT activity in the circulation is challenging because BoNTs are highly toxic and are rapidly taken up by neurons and removed from the bloodstream. Previously we reported a sensitive BoNT "Assay with a Large Immunosorbent Surface Area" that uses conversion of fluorogenic peptide substrates to measure the intrinsic endopeptidase activity of bead-captured BoNT. However, in complex biological samples, protease contaminants can also cleave the substrates, reducing sensitivity and specificity of the assay. Here, we present a novel set of fluorogenic peptides that serve as BoNT-specific substrates and protease-sensitive controls. BoNT-cleavable substrates contain a C-terminal Nle, while BoNT-noncleavable controls contain its isomer ε-Ahx. The substrates are cleaved by BoNT subtypes A1-A3 and A5. Substrates and control peptides can be cleaved by non-BoNT proteases (e.g., trypsin, proteinase K, and thermolysin) while obeying Michaelis-Menten kinetics. Using this novel substrate/control set, we studied BoNT/A1 activity in two mouse models of botulism. We detected BoNT/A serum activities ranging from ~3600 to 10 amol/L in blood of mice that had been intravenously injected 1 h prior with BoNT/A1 complex (100 to 4 pg/mouse). We also detected the endopeptidase activity of orally administered BoNT/A1 complex (1 µg) in blood 5 h after administration; activity was greatest 7 h after administration. Redistribution and elevation rates for active toxin were measured and are comparable to those reported for inactive toxin.


Asunto(s)
Bioensayo , Toxinas Botulínicas/análisis , Botulismo/metabolismo , Endopeptidasas/metabolismo , Fragmentos de Péptidos/metabolismo , Animales , Anticuerpos Antibacterianos/inmunología , Anticuerpos Antibacterianos/metabolismo , Toxinas Botulínicas/inmunología , Toxinas Botulínicas/metabolismo , Cromatografía Liquida/métodos , Modelos Animales de Enfermedad , Femenino , Humanos , Cinética , Ratones , Proteínas Recombinantes/metabolismo , Proteína 25 Asociada a Sinaptosomas/metabolismo
14.
Toxins (Basel) ; 15(5)2023 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-37235351

RESUMEN

Equine-derived antitoxin (BAT®) is the only treatment for botulism from botulinum neurotoxin serotype G (BoNT/G). BAT® is a foreign protein with potentially severe adverse effects and is not renewable. To develop a safe, more potent, and renewable antitoxin, humanized monoclonal antibodies (mAbs) were generated. Yeast displayed single chain Fv (scFv) libraries were prepared from mice immunized with BoNT/G and BoNT/G domains and screened with BoNT/G using fluorescence-activated cell sorting (FACS). Fourteen scFv-binding BoNT/G were isolated with KD values ranging from 3.86 nM to 103 nM (median KD 20.9 nM). Five mAb-binding non-overlapping epitopes were humanized and affinity matured to create antibodies hu6G6.2, hu6G7.2, hu6G9.1, hu6G10, and hu6G11.2, with IgG KD values ranging from 51 pM to 8 pM. Three IgG combinations completely protected mice challenged with 10,000 LD50s of BoNT/G at a total mAb dose of 6.25 µg per mouse. The mAb combinations have the potential for use in the diagnosis and treatment of botulism due to serotype G and, along with antibody combinations to BoNT/A, B, C, D, E, and F, provide the basis for a fully recombinant heptavalent botulinum antitoxin to replace the legacy equine product.


Asunto(s)
Antitoxinas , Toxinas Botulínicas Tipo A , Botulismo , Anticuerpos de Cadena Única , Ratones , Animales , Caballos , Anticuerpos Monoclonales , Botulismo/prevención & control , Saccharomyces cerevisiae/metabolismo , Inmunoglobulina G
15.
Pharmaceuticals (Basel) ; 15(7)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35890086

RESUMEN

This Special Issue of Pharmaceuticals describes recent advances accomplished in the field of antifungal development, especially the discovery of new drugs and drug repurposing [...].

16.
J Food Prot ; 84(1): 106-112, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32882027

RESUMEN

ABSTRACT: Almonds rejected as inedible are often used for production of almond oil. However, low-quality almonds are frequently contaminated with aflatoxins, and little is known regarding transfer of aflatoxins to almond oil during processing. In this study, oil was produced from reject almonds by hexane extraction. Of 19 almond samples that were naturally contaminated with aflatoxins, 17 oil samples contained measurable amounts of aflatoxins, and aflatoxin content of contaminated oil was correlated with aflatoxin content of the nuts. However, oil aflatoxin levels were not correlated with the oxidation level of the oil as measured by percent free fatty acids and peroxide value. Adsorbents used in oil refining were tested for their ability to remove aflatoxins from contaminated oil. Fuller's earth and bentonite were the most effective, removing 96 and 86% of total aflatoxins from contaminated oil samples, respectively. Treatment with diatomaceous earth, in contrast, had no effect on aflatoxin levels in oil. These results show that oil refining steps using mineral clay adsorbents may also function to remove aflatoxins from contaminated oil.


Asunto(s)
Aflatoxinas , Prunus dulcis , Aflatoxinas/análisis , Nueces , Aceites de Plantas
17.
Foods ; 10(9)2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34574183

RESUMEN

The fungal antioxidant system is one of the targets of the redox-active polyene antifungal drugs, including amphotericin B (AMB), nystatin (NYS), and natamycin (NAT). Besides medical applications, NAT has been used in industry for preserving foods and crops. In this study, we investigated two parameters (pH and food ingredients) affecting NAT efficacy. In the human pathogen, Aspergillus fumigatus, NAT (2 to 16 µg mL-1) exerted higher activity at pH 5.6 than at pH 3.5 on a defined medium. In contrast, NAT exhibited higher activity at pH 3.5 than at pH 5.6 against foodborne fungal contaminants, Aspergillus flavus, Aspergillus parasiticus, and Penicillium expansum, with P. expansum being the most sensitive. In commercial food matrices (10 organic fruit juices), food ingredients differentially affected NAT antifungal efficacy. Noteworthily, NAT overcame tolerance of the A. fumigatus signaling mutants to the fungicide fludioxonil and exerted antifungal synergism with the secondary metabolite, kojic acid (KA). Altogether, NAT exhibited better antifungal activity at acidic pH against foodborne fungi; however, the ingredients from commercial food matrices presented greater impact on NAT efficacy compared to pH values. Comprehensive determination of parameters affecting NAT efficacy and improved food formulation will promote sustainable food/crop production, food safety, and public health.

18.
J Inorg Biochem ; 219: 111408, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33826972

RESUMEN

Reaction of dihydroartemisinin (DHA) with 4-methyl-4'-carboxy-2,2'-bipyridine yielded the new ester derivative L1. Six novel organometallic half-sandwich chlorido Rh(III) and Ir(III) complexes (1-6) containing pentamethylcyclopentadienyl, (Cp*), tetramethylphenylcyclopentadienyl (Cpxph), or tetramethylbiphenylcyclopentadienyl (Cpxbiph), and N,N-chelated bipyridyl group of L1, have been synthesized and characterized. The complexes were screened for inhibitory activity against the Plasmodium falciparum 3D7 (sensitive), Dd2 (multi-drug resistant) and NF54 late stage gametocytes (LSGNF54), the parasite strain Trichomonas vaginalis G3, as well as A2780 (human ovarian carcinoma), A549 (human alveolar adenocarcinoma), HCT116 (human colorectal carcinoma), MCF7 (human breast cancer) and PC3 (human prostate cancer) cancer cell lines. They show nanomolar antiplasmodial activity, outperforming chloroquine and artemisinin. Their activities were also comparable to dihydroartemisinin. As anticancer agents, several of the complexes showed high inhibitory effects, with Ir(III) complex 3, containing the tetramethylbiphenylcyclopentadienyl ligand, having similar IC50 values (concentration for 50% of maximum inhibition of cell growth) as the clinical drug cisplatin (1.06-9.23 µM versus 0.24-7.2 µM, respectively). Overall, the iridium complexes (1-3) are more potent compared to the rhodium derivatives (4-6), and complex 3 emerges as the most promising candidate for future studies.


Asunto(s)
2,2'-Dipiridil/química , Artemisininas/química , Artemisininas/farmacología , Iridio/química , Compuestos Organometálicos/química , Rodio/química , Antiinfecciosos/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Complejos de Coordinación/química , Humanos , Compuestos Organometálicos/farmacología , Plasmodium falciparum/efectos de los fármacos , Trichomonas vaginalis/efectos de los fármacos
19.
Foods ; 10(2)2021 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-33498638

RESUMEN

Trichomoniasis in humans, caused by the protozoal parasite Trichomonas vaginalis, is the most common non-viral sexually transmitted disease, while Tritrichomonas foetus causes trichomonosis, an infection of the gastrointestinal tract and diarrhea in farm animals and domesticated cats. As part of an effort to determine the inhibitory effects of plant-based extracts and pure compounds, seven commercially available cherry tomato varieties were hand-peeled, freeze-dried, and pounded into powders. The anti-trichomonad inhibitory activities of these peel powders at 0.02% concentration determined using an in vitro cell assay varied widely from 0.0% to 66.7% against T. vaginalis G3 (human); from 0.9% to 66.8% for T. foetus C1 (feline); and from 0.0% to 81.3% for T. foetus D1 (bovine). The organic Solanum lycopersicum var. cerasiforme (D) peels were the most active against all three trichomonads, inhibiting 52.2% (G3), 66.8% (C1), and 81.3% (D1). Additional assays showed that none of the powders inhibited the growth of foodborne pathogenic bacteria, pathogenic fungi, or non-pathogenic lactobacilli. Tomato peel and pomace powders with high content of described biologically active compounds could serve as functional food and feed additives that might help overcome adverse effects of wide-ranging diseases and complement the treatment of parasites with the anti-trichomonad drug metronidazole.

20.
BMC Complement Med Ther ; 21(1): 229, 2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34517859

RESUMEN

BACKGROUND: We previously reported that the tomato glycoalkaloid tomatine inhibited the growth of Trichomonas vaginalis strain G3, Tritrichomonas foetus strain D1, and Tritrichomonas foetus-like strain C1 that cause disease in humans and farm and domesticated animals. The increasing prevalence of antibiotic resistance requires development of new tools to enhance or replace medicinal antibiotics. METHODS: Wild tomato plants were harvested and divided into leaves, stems, and fruit of different colors: green, yellow, and red. Samples were freeze dried and ground with a handheld mill. The resulting powders were evaluated for their potential anti-microbial effects on protozoan parasites, bacteria, and fungi. A concentration of 0.02% (w/v) was used for the inhibition of protozoan parasites. A high concentration of 10% (w/v) solution was tested for bacteria and fungi as an initial screen to evaluate potential anti-microbial activity and results using this high concentration limits its clinical relevance. RESULTS: Natural powders derived from various parts of tomato plants were all effective in inhibiting the growth of the three trichomonads to varying degrees. Test samples from leaves, stems, and immature 'green' tomato peels and fruit, all containing tomatine, were more effective as an inhibitor of the D1 strain than those prepared from yellow and red tomato peels which lack tomatine. Chlorogenic acid and quercetin glycosides were present in all parts of the plant and fruit, while caffeic acid was only found in the fruit peels. Any correlation between plant components and inhibition of the G3 and C1 strains was not apparent, although all the powders were variably effective. Tomato leaf was the most effective powder in all strains, and was also the highest in tomatine. S. enterica showed a minor susceptibility while B. cereus and C. albicans fungi both showed a significant growth inhibition with some of the test powders. The powders inhibited growth of the pathogens without affecting beneficial lactobacilli found in the normal flora of the vagina. CONCLUSIONS: The results suggest that powders prepared from tomato leaves, stems, and green tomato peels and to a lesser extent from peels from yellow and red tomatoes offer potential multiple health benefits against infections caused by pathogenic protozoa, bacteria, and fungi, without affecting beneficial lactobacilli that also reside in the normal flora of the vagina.


Asunto(s)
Antitricomonas/farmacología , Antitricomonas/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Solanum lycopersicum/química , Solanum lycopersicum/parasitología , Tricomoniasis/tratamiento farmacológico , Animales , California , Gatos/parasitología , Bovinos/parasitología , Femenino , Frutas/química , Humanos , Masculino , Hojas de la Planta/química , Tallos de la Planta/química , Trichomonas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA