Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4941, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866781

RESUMEN

Despite widespread adoption of tissue clearing techniques in recent years, poor access to suitable light-sheet fluorescence microscopes remains a major obstacle for biomedical end-users. Here, we present descSPIM (desktop-equipped SPIM for cleared specimens), a low-cost ($20,000-50,000), low-expertise (one-day installation by a non-expert), yet practical do-it-yourself light-sheet microscope as a solution for this bottleneck. Even the most fundamental configuration of descSPIM enables multi-color imaging of whole mouse brains and a cancer cell line-derived xenograft tumor mass for the visualization of neurocircuitry, assessment of drug distribution, and pathological examination by false-colored hematoxylin and eosin staining in a three-dimensional manner. Academically open-sourced ( https://github.com/dbsb-juntendo/descSPIM ), descSPIM allows routine three-dimensional imaging of cleared samples in minutes. Thus, the dissemination of descSPIM will accelerate biomedical discoveries driven by tissue clearing technologies.


Asunto(s)
Encéfalo , Imagenología Tridimensional , Microscopía Fluorescente , Animales , Ratones , Encéfalo/diagnóstico por imagen , Humanos , Microscopía Fluorescente/métodos , Microscopía Fluorescente/instrumentación , Imagenología Tridimensional/métodos , Línea Celular Tumoral
2.
Front Immunol ; 14: 1009973, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36776855

RESUMEN

Sterol regulatory element-binding proteins (SREBPs) are key transcription factors that control fatty acid and cholesterol metabolism. As the major SREBP isoform in macrophages, SREBP1a is also required for inflammatory and phagocytotic functions. However, it is insufficiently understood how SREBP1a is activated by the innate immune response in macrophages. Here, we show that mouse caspase-11 is a novel inflammatory activator of SREBP1a in macrophages. Upon LPS treatment, caspase-11 was found to promote the processing of site-1 protease (S1P), an enzyme that mediates the cleavage and activation of SREBP1. We also determined that caspase-11 directly associates with S1P and cleaves it at a specific site. Furthermore, deletion of the Casp4 gene, which encodes caspase-11, impaired the activation of S1P and SREBP1 as well as altered the expression of genes regulated by SREBP1 in macrophages. These results demonstrate that the caspase-11/S1P pathway activates SREBP1 in response to LPS, thus regulating subsequent macrophage activation.


Asunto(s)
Caspasas , Macrófagos , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Animales , Ratones , Lipopolisacáridos , Macrófagos/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
3.
FEBS Open Bio ; 13(1): 185-194, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36416450

RESUMEN

Macrophages distributed in tissues throughout the body contribute to homeostasis. In the inflammatory state, macrophages undergo mechanical stress that regulates the signal transduction of immune responses and various cellular functions. However, the effects of the inflammatory response on macrophages under physiological cyclic stretch are unclear. We found that physiological cyclic stretch suppresses inflammatory cytokine expression in macrophages by regulating NF-κB activity. NF-κB phosphorylation at Ser536 in macrophages was inhibited, suggesting that tank-binding kinase (TBK1) regulates NF-κB activity during physiological stress. Moreover, TBK1 expression was suppressed by physiological stretch, and TBK1 knockdown by siRNA induced the suppression of NF-κB phosphorylation at Ser536. In conclusion, physiological stretch triggers suppression of a TBK1-dependent excessive inflammatory response, which may be necessary to maintain tissue homeostasis.


Asunto(s)
Lipopolisacáridos , FN-kappa B , FN-kappa B/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Transducción de Señal , Inmunidad
4.
JCI Insight ; 7(22)2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36509286

RESUMEN

Recent studies have shown that cellular metabolism is tightly linked to the regulation of immune cells. Here, we show that activation of cholesterol metabolism, involving cholesterol uptake, synthesis, and autophagy/lipophagy, is integral to innate immune responses in macrophages. In particular, cholesterol accumulation within endosomes and lysosomes is a hallmark of the cellular cholesterol dynamics elicited by Toll-like receptor 4 activation and is required for amplification of myeloid differentiation primary response 88 (Myd88) signaling. Mechanistically, Myd88 binds cholesterol via its CLR recognition/interaction amino acid consensus domain, which promotes the protein's self-oligomerization. Moreover, a novel supramolecular compound, polyrotaxane (PRX), inhibited Myd88­dependent inflammatory macrophage activation by decreasing endolysosomal cholesterol via promotion of cholesterol trafficking and efflux. PRX activated liver X receptor, which led to upregulation of ATP binding cassette transporter A1, thereby promoting cholesterol efflux. PRX also inhibited atherogenesis in Ldlr-/- mice. In humans, cholesterol levels in circulating monocytes correlated positively with the severity of atherosclerosis. These findings demonstrate that dynamic changes in cholesterol metabolism are mechanistically linked to Myd88­dependent inflammatory programs in macrophages and support the notion that cellular cholesterol metabolism is integral to innate activation of macrophages and is a potential therapeutic and diagnostic target for inflammatory diseases.


Asunto(s)
Aterosclerosis , Macrófagos , Ratones , Humanos , Animales , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/metabolismo , Macrófagos/metabolismo , Aterosclerosis/metabolismo , Colesterol/metabolismo , Receptores X del Hígado/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA